版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省宜春九中2025屆高三第二次聯(lián)考數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線:繞其對稱中心旋轉后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或2.函數(shù)的定義域為()A.或 B.或C. D.3.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.4.已知,則,不可能滿足的關系是()A. B. C. D.5.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.326.已知直線:()與拋物線:交于(坐標原點),兩點,直線:與拋物線交于,兩點.若,則實數(shù)的值為()A. B. C. D.7.已知,,,,.若實數(shù),滿足不等式組,則目標函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值8.設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.9.已知正項等比數(shù)列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.410.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.811.閱讀下側程序框圖,為使輸出的數(shù)據(jù)為31,則①處應填的數(shù)字為A.4 B.5 C.6 D.712.已知函數(shù),則在上不單調的一個充分不必要條件可以是()A. B. C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的圖象在點處的切線方程是,則的值等于__________.14.雙曲線的焦距為__________,漸近線方程為________.15.若滿足約束條件,則的最小值是_________,最大值是_________.16.已知實數(shù),滿足,則目標函數(shù)的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.18.(12分)已知函數(shù).(1)求函數(shù)的單調遞增區(qū)間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.19.(12分)為響應“堅定文化自信,建設文化強國”,提升全民文化修養(yǎng),引領學生“讀經(jīng)典用經(jīng)典”,某廣播電視臺計劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學校隨機抽取了120名學生做調查,統(tǒng)計結果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認為喜歡閱讀中國古典文學與性別有關系?男生女生總計喜歡閱讀中國古典文學不喜歡閱讀中國古典文學總計(2)為做好文化建設引領,實驗組把該校作為試點,和該校的學生進行中國古典文學閱讀交流.實驗人員已經(jīng)從所調查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學.現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學的人數(shù),求5的分布列及數(shù)學期望附表及公式:.20.(12分)在中,角的對邊分別為,且滿足.(Ⅰ)求角的大?。唬á颍┤舻拿娣e為,,求和的值.21.(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.22.(10分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當時,求函數(shù)的極值;(2)設函數(shù)的導函數(shù)為,求證:函數(shù)有且僅有一個零點.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【詳解】由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數(shù)的概念,考查了分類討論的數(shù)學思想.2、A【解析】
根據(jù)偶次根式被開方數(shù)非負可得出關于的不等式,即可解得函數(shù)的定義域.【詳解】由題意可得,解得或.因此,函數(shù)的定義域為或.故選:A.【點睛】本題考查具體函數(shù)定義域的求解,考查計算能力,屬于基礎題.3、D【解析】
本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質,難度偏難.4、C【解析】
根據(jù)即可得出,,根據(jù),,即可判斷出結果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數(shù)式和對數(shù)式的互化,對數(shù)的運算,以及基本不等式:和不等式的應用,屬于中檔題5、B【解析】
根據(jù)隨機數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內(nèi)的有:16,26,16,24,23,21,…依次不重復的第5個編號為21.故選:B【點睛】本小題主要考查隨機數(shù)表法進行抽樣,屬于基礎題.6、D【解析】
設,,聯(lián)立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標,最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設,,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點睛】本題考查直線與拋物線的綜合應用,弦長公式的應用,屬于中檔題.7、B【解析】
判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數(shù)一定有最大值和最小值.故選:B【點睛】本題考查了目標函數(shù)最值是否存在問題,考查了數(shù)形結合思想,考查了不等式的性質應用.8、B【解析】
設過點作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運算求解、推理論證能力,屬于中檔題.9、D【解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設等比數(shù)列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數(shù)列的知識,是一道中檔題.10、C【解析】
設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經(jīng)過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.【點睛】本題考查拋物線的性質,解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數(shù)的值.本題難度一般.11、B【解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當i<5時退出,故選B.12、D【解析】
先求函數(shù)在上不單調的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調,令,則函數(shù)對稱軸方程為在區(qū)間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數(shù)的函數(shù)的單調性及充分不必要條件,要注意二次函數(shù)零點的求法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用導數(shù)的幾何意義即可解決.【詳解】由已知,,,故.故答案為:.【點睛】本題考查導數(shù)的幾何意義,要注意在某點的切線與過某點的切線的區(qū)別,本題屬于基礎題.14、6【解析】由題得所以焦距,故第一個空填6.由題得漸近線方程為.故第二個空填.15、06【解析】
作不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,即可求出結果.【詳解】作出可行域,如圖中的陰影部分:求的最值,即求直線在軸上的截距最小和最大時,當直線過點時,軸上截距最大,即z取最小值,.當直線過點時,軸上截距最小,即z取最大值,.故答案為:0;6.【點睛】本題主要考查了線性規(guī)劃中的最值問題,利用數(shù)形結合是解決問題的基本方法,屬于中檔題.16、-1【解析】
作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.【詳解】作出實數(shù)x,y滿足對應的平面區(qū)域如圖陰影所示;由z=x+2y﹣1,得yx,平移直線yx,由圖象可知當直線yx經(jīng)過點A時,直線yx的縱截距最小,此時z最?。?,得A(﹣1,﹣1),此時z的最小值為z=﹣1﹣2﹣1=﹣1,故答案為﹣1.【點睛】本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃題目的常用方法,是基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標方程;(2)聯(lián)立極坐標方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標方程為:.轉換為極坐標方程為:,即.曲線的參數(shù)方程是(為參數(shù)),轉換為直角坐標方程為:,化為一般式得化為極坐標方程為:.
(2)由于,得,.所以,所以,由于,所以,所以.【點睛】本題主要考查參數(shù)方程與普通方程的互化、直角坐標方程與極坐標方程的互化,熟記公式即可,屬于??碱}型.18、(1);(2)【解析】
(1)化簡得到,取,解得答案.(2),解得,根據(jù)余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因為,故,.根據(jù)余弦定理:,..【點睛】本題考查了三角恒等變換,三角函數(shù)單調性,余弦定理,意在考查學生對于三角函數(shù)知識的綜合應用.19、(1)見解析,沒有(2)見解析,【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷出沒有的把握認為喜歡閱讀中國古典文學與性別有關系.(2)先判斷出的所有可能取值,然后根據(jù)古典概型概率計算公式,計算出分布列并求得數(shù)學期望.【詳解】(1)男生女生總計喜歡閱讀中國古典文學423072不喜歡閱讀中國古典文學301848總計7248120所以,沒有的把握認為喜歡閱讀中國古典文學與性別有關系.(2)設參加座談會的男生中喜歡中國古典文學的人數(shù)為,女生中喜歡古典文學的人數(shù)為,則.且;;.所以的分布列為則.【點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查隨機變量分布列和數(shù)學期望的求法,考查數(shù)據(jù)處理能力,屬于中檔題.20、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)運用正弦定理和二角和的正弦公式,化簡,即可求出角的大??;(Ⅱ)通過面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【點睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數(shù)關系,考查了運算能力.21、(1)極大值為;極小值為;(2)見解析【解析】
(1)對函數(shù)求導,進而可求出單調性,從而可求出函數(shù)的極值;(2)構造函數(shù),求導并判斷單調性可得,從而在上恒成立,再結合,,可得到,即可證明結論成立.【詳解】(1)函數(shù)的定義域為,,所以當時,;當時,,則的單調遞增區(qū)間為和,單調遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設函數(shù),則,,則在上恒成立,即在上單調遞增,故,又,則,即在上恒成立.因為,所以,又,則,因為,且在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 原油市場供需分析-洞察分析
- 幼兒急疹預防接種策略-洞察分析
- 體育賽事數(shù)據(jù)分析-洞察分析
- 梯度材料表面處理技術-洞察分析
- 腺病與慢性疼痛關系-洞察分析
- 水電安裝智能化產(chǎn)業(yè)鏈構建-洞察分析
- 網(wǎng)絡博弈算法研究-洞察分析
- 消費者需求變化與競爭-洞察分析
- 疫苗研發(fā)與養(yǎng)殖動物免疫-洞察分析
- 水下油氣管道風險評估-洞察分析
- 2024年秋季學期無機化學(藥)期末綜合試卷-國開(XJ)-參考資料
- 2025年1月浙江省高中學業(yè)水平考試政治試卷試題(含答案解析)
- 學校網(wǎng)絡合同范例
- 2022-2023學年上海市浦東區(qū)高二(上)期末語文試卷
- 專題1數(shù)列的通項公式的求法-高二上學期數(shù)學人教A版選擇性必修第二冊
- 工程建設安全專項整治三年行動實施方案
- 2025年中國帽子行業(yè)發(fā)展現(xiàn)狀、進出口貿(mào)易及市場規(guī)模預測報告
- 工地高處墜落防范與措施方案
- 【MOOC】英文技術寫作-東南大學 中國大學慕課MOOC答案
- 電氣工程及其自動化職業(yè)規(guī)劃課件
- 輻射與防護學習通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論