版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇邳州運(yùn)河中學(xué)2025屆高三3月份第一次模擬考試數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2822.已知雙曲線的焦距為,若的漸近線上存在點(diǎn),使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.3.已知向量,,且,則()A. B. C.1 D.24.若雙曲線的焦距為,則的一個(gè)焦點(diǎn)到一條漸近線的距離為()A. B. C. D.5.設(shè)雙曲線(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過F作AF的垂線與雙曲線交于B,C兩點(diǎn),過B,C分別作AC,AB的垂線交于點(diǎn)D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.6.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.7.已知雙曲線C:()的左、右焦點(diǎn)分別為,過的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.8.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.9.已知集合,,,則()A. B. C. D.10.已知點(diǎn)、.若點(diǎn)在函數(shù)的圖象上,則使得的面積為的點(diǎn)的個(gè)數(shù)為()A. B. C. D.11.M、N是曲線y=πsinx與曲線y=πcosx的兩個(gè)不同的交點(diǎn),則|MN|的最小值為()A.π B.π C.π D.2π12.函數(shù)的定義域?yàn)?,集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為等比數(shù)列的前項(xiàng)和,若,且,,成等差數(shù)列,則.14.角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊經(jīng)過點(diǎn),則的值是.15.在平行四邊形中,已知,,,若,,則____________.16.《易經(jīng)》是中國傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求和的直角坐標(biāo)方程;(2)已知為曲線上的一個(gè)動(dòng)點(diǎn),求線段的中點(diǎn)到直線的最大距離.18.(12分)已知橢圓的右焦點(diǎn)為,離心率為.(1)若,求橢圓的方程;(2)設(shè)直線與橢圓相交于、兩點(diǎn),、分別為線段、的中點(diǎn),若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.19.(12分)已知函數(shù).(1)解不等式;(2)若,,,求證:.20.(12分)已知橢圓的離心率為,且以原點(diǎn)O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知?jiǎng)又本€l過右焦點(diǎn)F,且與橢圓C交于A、B兩點(diǎn),已知Q點(diǎn)坐標(biāo)為,求的值.21.(12分)設(shè)都是正數(shù),且,.求證:.22.(10分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面;(2)求幾何體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
將三視圖還原成幾何體,然后分別求出各個(gè)面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點(diǎn),其中,,,所以表面積.故選B項(xiàng).【點(diǎn)睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題2、B【解析】
由可得;由過點(diǎn)所作的圓的兩條切線互相垂直可得,又焦點(diǎn)到雙曲線漸近線的距離為,則,進(jìn)而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,必有,而焦點(diǎn)到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點(diǎn)睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應(yīng)用.3、A【解析】
根據(jù)向量垂直的坐標(biāo)表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點(diǎn)睛】本小題主要考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.4、B【解析】
根據(jù)焦距即可求得參數(shù),再根據(jù)點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的焦距為,故可得,解得,不妨?。挥纸裹c(diǎn),其中一條漸近線為,由點(diǎn)到直線的距離公式即可求的.故選:B.【點(diǎn)睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.5、A【解析】
由題意,根據(jù)雙曲線的對(duì)稱性知在軸上,設(shè),則由得:,因?yàn)榈街本€的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.6、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對(duì)流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項(xiàng).7、D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.8、A【解析】
根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運(yùn)算能力,屬于基礎(chǔ)題.9、D【解析】
根據(jù)集合的基本運(yùn)算即可求解.【詳解】解:,,,則故選:D.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,屬于基礎(chǔ)題.10、C【解析】
設(shè)出點(diǎn)的坐標(biāo),以為底結(jié)合的面積計(jì)算出點(diǎn)到直線的距離,利用點(diǎn)到直線的距離公式可得出關(guān)于的方程,求出方程的解,即可得出結(jié)論.【詳解】設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,即,設(shè)點(diǎn)到直線的距離為,則,解得,另一方面,由點(diǎn)到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點(diǎn)共有三個(gè).故選:C.【點(diǎn)睛】本題考查三角形面積的計(jì)算,涉及點(diǎn)到直線的距離公式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.11、C【解析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.12、A【解析】
根據(jù)函數(shù)定義域得集合,解對(duì)數(shù)不等式得到集合,然后直接利用交集運(yùn)算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點(diǎn)睛】本題考查了交集及其運(yùn)算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】試題分析:∵,,成等差數(shù)列,∴,又∵等比數(shù)列,∴.考點(diǎn):等差數(shù)列與等比數(shù)列的性質(zhì).【名師點(diǎn)睛】本題主要考查等差與等比數(shù)列的性質(zhì),屬于容易題,在解題過程中,需要建立關(guān)于等比數(shù)列基本量的方程即可求解,考查學(xué)生等價(jià)轉(zhuǎn)化的思想與方程思想.14、【解析】試題分析:由三角函數(shù)定義知,又由誘導(dǎo)公式知,所以答案應(yīng)填:.考點(diǎn):1、三角函數(shù)定義;2、誘導(dǎo)公式.15、【解析】
設(shè),則,得到,,利用向量的數(shù)量積的運(yùn)算,即可求解.【詳解】由題意,如圖所示,設(shè),則,又由,,所以為的中點(diǎn),為的三等分點(diǎn),則,,所以.【點(diǎn)睛】本題主要考查了向量的共線定理以及向量的數(shù)量積的運(yùn)算,其中解答中熟記向量的線性運(yùn)算法則,以及向量的共線定理和向量的數(shù)量積的運(yùn)算公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.16、【解析】
觀察八卦中陰線和陽線的情況為3線全為陽線或全為陰線各一個(gè),還有6個(gè)是1陰2陽和1陽2陰各3個(gè)。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰?!驹斀狻堪素灾嘘幘€和陽線的情況為3線全為陽線的一個(gè),全為陰線的一個(gè),1陰2陽的3個(gè),1陽2陰的3個(gè)。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰?!鄰?個(gè)卦中任取2卦,共有種可能,兩卦中共2陽4陰的情況有,所求概率為。故答案為:?!军c(diǎn)睛】本題考查古典概型,解題關(guān)鍵是確定基本事件的個(gè)數(shù)。本題不能受八卦影響,我們關(guān)心的是八卦中陰線和陽線的條數(shù),這樣才能正確地確定基本事件的個(gè)數(shù)。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)..(2)最大距離為.【解析】
(1)直接利用極坐標(biāo)方程和參數(shù)方程的公式計(jì)算得到答案.(2)曲線的參數(shù)方程為,設(shè),計(jì)算點(diǎn)到直線的距離公式得到答案.【詳解】(1)由,得,則曲線的直角坐標(biāo)方程為,即.直線的直角坐標(biāo)方程為.(2)可知曲線的參數(shù)方程為(為參數(shù)),設(shè),,則到直線的距離為,所以線段的中點(diǎn)到直線的最大距離為.【點(diǎn)睛】本題考查了極坐標(biāo)方程,參數(shù)方程,距離的最值問題,意在考查學(xué)生的計(jì)算能力.18、(1);(2).【解析】
(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設(shè)點(diǎn)、,聯(lián)立直線與橢圓的方程,列出韋達(dá)定理,由題意得出,可得出,【詳解】(1)由題意得,,.又因?yàn)?,,所以橢圓的方程為;(2)由,得.設(shè)、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因?yàn)?,,所?即,將其整理為.因?yàn)?,所以?所以,即.【點(diǎn)睛】本題考查橢圓方程的求法和直線與橢圓位置關(guān)系的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化,考查計(jì)算能力,屬于中等題.19、(1);(2)證明見解析.【解析】
(1)分、、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號(hào)即可,由此證明出所證不等式成立.【詳解】(1).當(dāng)時(shí),由,解得,此時(shí);當(dāng)時(shí),不成立;當(dāng)時(shí),由,解得,此時(shí).綜上所述,不等式的解集為;(2)要證,即證,因?yàn)?,,所以,,?所以,.故所證不等式成立.【點(diǎn)睛】本題考查絕對(duì)值不等式的求解,同時(shí)也考查了利用分析法和作差法證明不等式,考查分類討論思想以及推理能力,屬于中等題.20、(1);(2).【解析】
(1)根據(jù)橢圓的離心率為,得到,根據(jù)直線與圓的位置關(guān)系,得到原心到直線的距離等于半徑,得到,從而求得,進(jìn)而求得橢圓的方程;(2)分直線的斜率存在是否為0與不存在三種情況討論,寫出直線的方程,與橢圓方程聯(lián)立,利用韋達(dá)定理,向量的數(shù)量積,結(jié)合已知條件求得結(jié)果.【詳解】(1)由離心率為,可得,,且以原點(diǎn)O為圓心,橢圓C的長半軸長為半徑的圓的方程為,因與直線相切,則有,即,,,故而橢圓方程為.(2)①當(dāng)直線l的斜率不存在時(shí),,,由于;②當(dāng)直線l的斜率為0時(shí),,,則;③當(dāng)直線l的斜率不為0時(shí),設(shè)直線l的方程為,,,由及,得,有,∴,,,,∴,綜上所述:.【點(diǎn)睛】該題考查直線與圓錐曲線的綜合問題,橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,求向量數(shù)量積,在解題的過程中,注意對(duì)直線方程的分類討論,屬于中檔題目.21、證明見解析【解析】
利用比較法進(jìn)行證明:把代數(shù)式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因?yàn)?,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點(diǎn)睛】本題考查利用比較法證明不等式;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;把差變形為因式乘積的形式是證明本題的關(guān)鍵;屬于中檔題。22、(1)見解析;(2)【解析】
(1)由題可知,根據(jù)三角形的中位線的性質(zhì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《工程設(shè)備復(fù)習(xí)》課件
- 心電信號(hào)識(shí)別技術(shù)-洞察分析
- 文物保護(hù)國際合作與交流-洞察分析
- 文本轉(zhuǎn)換的語義依賴規(guī)則研究-洞察分析
- 形式化方法在中綴轉(zhuǎn)后綴轉(zhuǎn)換中的應(yīng)用研究-洞察分析
- 物聯(lián)網(wǎng)安全防護(hù)-第1篇-洞察分析
- 特種水泥性能優(yōu)化-洞察分析
- 初級(jí)職稱個(gè)人專業(yè)技術(shù)工作總結(jié)范文(12篇)
- 醫(yī)學(xué)圖像增強(qiáng)與降噪算法-洞察分析
- 網(wǎng)絡(luò)切片技術(shù)在行業(yè)專網(wǎng)的應(yīng)用研究-洞察分析
- 2024年財(cái)會(huì)業(yè)務(wù)知識(shí)競賽題庫及答案(630題)
- 河北高速公路集團(tuán)限公司2024屆校園招聘(117人)高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 機(jī)械制圖-斷面圖
- 應(yīng)急管理法律法規(guī)課件
- 醫(yī)療投訴處理部工作總結(jié)與改進(jìn)措施計(jì)劃
- 科研倫理與學(xué)術(shù)規(guī)范-期末考試答案
- 廣告設(shè)計(jì)與創(chuàng)意作業(yè)指導(dǎo)書
- 8.1數(shù)學(xué)廣角-數(shù)與形(基礎(chǔ)作業(yè))2024-2025學(xué)年六年級(jí)上冊數(shù)學(xué) 人教版(含解析)
- 北京奧林匹克公園規(guī)劃設(shè)計(jì)方案
- 《植物生產(chǎn)與環(huán)境》 - 植物生產(chǎn)與環(huán)境概述 第1卷 (解析版)
- 個(gè)人球桿轉(zhuǎn)讓合同模板
評(píng)論
0/150
提交評(píng)論