版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
白山市重點(diǎn)中學(xué)2025屆高考沖刺模擬數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為拋物線的準(zhǔn)線,拋物線上的點(diǎn)到的距離為,點(diǎn)的坐標(biāo)為,則的最小值是()A. B.4 C.2 D.2.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個(gè)面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.3.已知是雙曲線的左、右焦點(diǎn),是的左、右頂點(diǎn),點(diǎn)在過(guò)且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.4.已知集合,,若,則實(shí)數(shù)的值可以為()A. B. C. D.5.已知冪函數(shù)的圖象過(guò)點(diǎn),且,,,則,,的大小關(guān)系為()A. B. C. D.6.在邊長(zhǎng)為1的等邊三角形中,點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),則()A. B. C. D.7.若復(fù)數(shù)滿足,則對(duì)應(yīng)的點(diǎn)位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.9.已知函數(shù).若存在實(shí)數(shù),且,使得,則實(shí)數(shù)a的取值范圍為()A. B. C. D.10.已知雙曲線滿足以下條件:①雙曲線E的右焦點(diǎn)與拋物線的焦點(diǎn)F重合;②雙曲線E與過(guò)點(diǎn)的冪函數(shù)的圖象交于點(diǎn)Q,且該冪函數(shù)在點(diǎn)Q處的切線過(guò)點(diǎn)F關(guān)于原點(diǎn)的對(duì)稱點(diǎn).則雙曲線的離心率是()A. B. C. D.11.如圖,在中,,是上一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.12.已知函數(shù)的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點(diǎn)旋轉(zhuǎn);②沿軸正方向平移;③以軸為軸作軸對(duì)稱;④以軸的某一條垂線為軸作軸對(duì)稱.A.①③ B.③④ C.②③ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大值為時(shí),三棱錐的外接球的表面積為______.14.角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn),則的值是.15.三個(gè)小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個(gè)人的可能性相同),則三人都收到禮物的概率為______.16.已知f(x)為偶函數(shù),當(dāng)x≤0時(shí),f(x)=e-x-1-x,則曲線y=f(x)三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點(diǎn),連接,為的中點(diǎn),連接.(1)求證:.(2)求二面角的余弦值.18.(12分)已知,,,,證明:(1);(2).19.(12分)己知圓F1:(x+1)1+y1=r1(1≤r≤3),圓F1:(x-1)1+y1=(4-r)1.(1)證明:圓F1與圓F1有公共點(diǎn),并求公共點(diǎn)的軌跡E的方程;(1)已知點(diǎn)Q(m,0)(m<0),過(guò)點(diǎn)E斜率為k(k≠0)的直線與(Ⅰ)中軌跡E相交于M,N兩點(diǎn),記直線QM的斜率為k1,直線QN的斜率為k1,是否存在實(shí)數(shù)m使得k(k1+k1)為定值?若存在,求出m的值,若不存在,說(shuō)明理由.20.(12分)為了保障全國(guó)第四次經(jīng)濟(jì)普查順利進(jìn)行,國(guó)家統(tǒng)計(jì)局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國(guó)家綜合試點(diǎn)地區(qū),然后再逐級(jí)確定普查區(qū)域,直到基層的普查小區(qū),在普查過(guò)程中首先要進(jìn)行宣傳培訓(xùn),然后確定對(duì)象,最后入戶登記,由于種種情況可能會(huì)導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn),在某普查小區(qū),共有50家企事業(yè)單位,150家個(gè)體經(jīng)營(yíng)戶,普查情況如下表所示:普查對(duì)象類別順利不順利合計(jì)企事業(yè)單位401050個(gè)體經(jīng)營(yíng)戶10050150合計(jì)14060200(1)寫出選擇5個(gè)國(guó)家綜合試點(diǎn)地區(qū)采用的抽樣方法;(2)根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對(duì)象的類別有關(guān)”;(3)以該小區(qū)的個(gè)體經(jīng)營(yíng)戶為樣本,頻率作為概率,從全國(guó)個(gè)體經(jīng)營(yíng)戶中隨機(jī)選擇3家作為普查對(duì)象,入戶登記順利的對(duì)象數(shù)記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82821.(12分)如圖,在三棱錐中,,,,平面平面,、分別為、中點(diǎn).(1)求證:;(2)求二面角的大?。?2.(10分)在中,角、、的對(duì)邊分別為、、,且.(1)若,,求的值;(2)若,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
設(shè)拋物線焦點(diǎn)為,由題意利用拋物線的定義可得,當(dāng)共線時(shí),取得最小值,由此求得答案.【詳解】解:拋物線焦點(diǎn),準(zhǔn)線,過(guò)作交于點(diǎn),連接由拋物線定義,
,
當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),取“=”號(hào),∴的最小值為.
故選:B.【點(diǎn)睛】本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.2、A【解析】
根據(jù)題意,畫出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項(xiàng).【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個(gè)面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個(gè)面所在平面均相交,∴,∴結(jié)合四個(gè)選項(xiàng)可知,只有正確.故選:A.【點(diǎn)睛】本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對(duì)空間想象能力要求較高,屬于中檔題.3、D【解析】
根據(jù)為等腰三角形,可求出點(diǎn)P的坐標(biāo),又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因?yàn)闉榈妊切?,,所以?,又,,解得,所以雙曲線的漸近線方程為,故選:D【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),屬于中檔題.4、D【解析】
由題意可得,根據(jù),即可得出,從而求出結(jié)果.【詳解】,且,,∴的值可以為.故選:D.【點(diǎn)睛】考查描述法表示集合的定義,以及并集的定義及運(yùn)算.5、A【解析】
根據(jù)題意求得參數(shù),根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),以及對(duì)數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.6、C【解析】
根據(jù)平面向量基本定理,用來(lái)表示,然后利用數(shù)量積公式,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),所以又所以則故選:C【點(diǎn)睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細(xì)心觀察,屬基礎(chǔ)題.7、D【解析】
利用復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法化簡(jiǎn)復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對(duì)應(yīng)的點(diǎn),對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運(yùn)算求解能力,屬于基礎(chǔ)題.8、B【解析】
根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當(dāng)時(shí),,無(wú)意義,故排除A;又,則,故排除D;對(duì)于C,當(dāng)時(shí),,所以不單調(diào),故排除C;故選:B【點(diǎn)睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問(wèn)題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.9、D【解析】
首先對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的符號(hào)分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿足的不等關(guān)系,求得結(jié)果.【詳解】,令,得,.其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點(diǎn)睛】該題考查的是有關(guān)根據(jù)函數(shù)值的關(guān)系求參數(shù)的取值范圍的問(wèn)題,涉及到的知識(shí)點(diǎn)有利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,畫出圖象數(shù)形結(jié)合,屬于較難題目.10、B【解析】
由已知可求出焦點(diǎn)坐標(biāo)為,可求得冪函數(shù)為,設(shè)出切點(diǎn)通過(guò)導(dǎo)數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點(diǎn)坐標(biāo),然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點(diǎn)為,F(xiàn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn);,,所以,,設(shè),則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點(diǎn)睛】本題考查雙曲線的性質(zhì),已知拋物線方程求焦點(diǎn)坐標(biāo),求冪函數(shù)解析式,直線的斜率公式及導(dǎo)數(shù)的幾何意義,考查了學(xué)生分析問(wèn)題和解決問(wèn)題的能力,難度一般.11、C【解析】
由題意,可根據(jù)向量運(yùn)算法則得到(1﹣m),從而由向量分解的唯一性得出關(guān)于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點(diǎn)睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關(guān)鍵,本題屬于基礎(chǔ)題.12、D【解析】
計(jì)算得到,,故函數(shù)是周期函數(shù),軸對(duì)稱圖形,故②④正確,根據(jù)圖像知①③錯(cuò)誤,得到答案.【詳解】,,,當(dāng)沿軸正方向平移個(gè)單位時(shí),重合,故②正確;,,故,函數(shù)關(guān)于對(duì)稱,故④正確;根據(jù)圖像知:①③不正確;故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像判斷函數(shù)性質(zhì),意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)和圖像的綜合應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設(shè)出的長(zhǎng),即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長(zhǎng)度,最后根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關(guān)系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過(guò)點(diǎn)作面,垂足為,過(guò)點(diǎn)作交于點(diǎn),連接.則為二面角的平面角的補(bǔ)角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點(diǎn).設(shè),.∴.故三棱錐的體積為當(dāng)且僅當(dāng)時(shí),,即.∴三點(diǎn)共線.設(shè)三棱錐的外接球的球心為,半徑為.過(guò)點(diǎn)作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點(diǎn)睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運(yùn)用,基本不等式的應(yīng)用,以及球的幾何性質(zhì)的應(yīng)用,意在考查學(xué)生的直觀想象能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.14、【解析】試題分析:由三角函數(shù)定義知,又由誘導(dǎo)公式知,所以答案應(yīng)填:.考點(diǎn):1、三角函數(shù)定義;2、誘導(dǎo)公式.15、【解析】
基本事件總數(shù),三人都收到禮物包含的基本事件個(gè)數(shù).由此能求出三人都收到禮物的概率.【詳解】三個(gè)小朋友之間準(zhǔn)備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個(gè)人的可能性相同),基本事件總數(shù),三人都收到禮物包含的基本事件個(gè)數(shù).則三人都收到禮物的概率.故答案為:.【點(diǎn)睛】本題考查古典概型概率的求法,考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、y=2x【解析】試題分析:當(dāng)x>0時(shí),-x<0,則f(-x)=ex-1+x.又因?yàn)閒(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點(diǎn)】函數(shù)的奇偶性、解析式及導(dǎo)數(shù)的幾何意義【知識(shí)拓展】本題題型可歸納為“已知當(dāng)x>0時(shí),函數(shù)y=f(x),則當(dāng)x<0時(shí),求函數(shù)的解析式”.有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當(dāng)x<0時(shí),函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見解析;(2)【解析】
(1)連接,證明,得到面,得到證明.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,為平面的法向量,平面的一個(gè)法向量為,計(jì)算夾角得到答案.【詳解】(1)連接,在四邊形中,,平面,面,,,面,又面,,又在直角三角形中,,為的中點(diǎn),,,面,面,.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)為平面的法向量,,,,,令,則,,,同理可得平面的一個(gè)法向量為.設(shè)向量與的所成的角為,,由圖形知,二面角為銳二面角,所以余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.18、(1)證明見解析(2)證明見解析【解析】
(1)先由基本不等式可得,而,即得證;(2)首先推導(dǎo)出,再利用,展開即可得證.【詳解】證明:(1),,,(當(dāng)且僅當(dāng)時(shí)取等號(hào)).(2),,,,,,,.【點(diǎn)睛】本題考查不等式的證明,考查基本不等式的運(yùn)用,考查邏輯推理能力,屬于中檔題.19、(1)見解析,(1)存在,【解析】
(1)求出圓和圓的圓心和半徑,通過(guò)圓F1與圓F1有公共點(diǎn)求出的范圍,從而根據(jù)可得點(diǎn)的軌跡,進(jìn)而求出方程;(1)過(guò)點(diǎn)且斜率為的直線方程為,設(shè),,聯(lián)立直線方程和橢圓方程,根據(jù)韋達(dá)定理以及,,可得,根據(jù)其為定值,則有,進(jìn)而可得結(jié)果.【詳解】(1)因?yàn)?,,所以,因?yàn)閳A的半徑為,圓的半徑為,又因?yàn)?,所以,即,所以圓與圓有公共點(diǎn),設(shè)公共點(diǎn)為,因此,所以點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓,所以,,,即軌跡的方程為;(1)過(guò)點(diǎn)且斜率為的直線方程為,設(shè),由消去得到,則,,①因?yàn)?,,所以,將①式代入整理得因?yàn)?,所以?dāng)時(shí),即時(shí),.即存在實(shí)數(shù)使得.【點(diǎn)睛】本題考查橢圓定理求橢圓方程,考查橢圓中的定值問(wèn)題,靈活應(yīng)用韋達(dá)定理進(jìn)行計(jì)算是關(guān)鍵,并且觀察出取定值的條件也很重要,考查了學(xué)生分析能力和計(jì)算能力,是中檔題.20、(1)分層抽樣,簡(jiǎn)單隨機(jī)抽樣(抽簽亦可)(2)有(3)分布列見解析,【解析】
(1)根據(jù)題意可以選用分層抽樣法,或者簡(jiǎn)單隨機(jī)抽樣法.(2)由已知條件代入公式計(jì)算出結(jié)果,進(jìn)而可以得到結(jié)果.(3)由已知條件計(jì)算出的分布列,進(jìn)而求出的數(shù)學(xué)期望.【詳解】(1)分層抽樣,簡(jiǎn)單隨機(jī)抽樣(抽簽亦可).(2)將列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算得所以有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對(duì)象的類別有關(guān)”.(3)以頻率作為概率,隨機(jī)選擇1家個(gè)體經(jīng)營(yíng)戶作為普查對(duì)象,入戶登記順利的概率為.可取0,1,2,3,計(jì)算可得的分布列為:0123【點(diǎn)睛】本題考查了運(yùn)用數(shù)學(xué)模型解答實(shí)際生活問(wèn)題,運(yùn)用合理的抽樣方法,計(jì)算以及數(shù)據(jù)的分布列和數(shù)學(xué)期望,需要正確運(yùn)用公式進(jìn)行求解,本題屬于??碱}型,需要掌握解題方法.21、(1)證明見解析;(2)60°.【解析】試題分析:(1)連結(jié)PD,由題意可得,則AB⊥平面PDE,;(2)法一:結(jié)合幾何關(guān)系做出二面角的平面角,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)于青春廣播稿范文300字(12篇)
- 線索樹內(nèi)存優(yōu)化算法-洞察分析
- 文本正則處理新技術(shù)-洞察分析
- 游戲情感化設(shè)計(jì)研究-洞察分析
- 消費(fèi)終端市場(chǎng)細(xì)分研究-洞察分析
- 藥品價(jià)格波動(dòng)因素-洞察分析
- 網(wǎng)絡(luò)安全國(guó)際合作政策分析-洞察分析
- 星際塵埃凝聚動(dòng)力學(xué)-洞察分析
- 旋復(fù)花藥效物質(zhì)基礎(chǔ)研究-洞察分析
- 鄉(xiāng)村文化體驗(yàn)與地方特色-洞察分析
- 北京市房山區(qū)2023-2024學(xué)年三年級(jí)上學(xué)期期末數(shù)學(xué)試卷
- 2024年中考英語(yǔ)二輪復(fù)習(xí)學(xué)案連詞
- 《中國(guó)建筑股份有限公司施工企業(yè)質(zhì)量管理辦法》
- 肛腸科患者的疼痛管理策略與實(shí)踐經(jīng)驗(yàn)
- 風(fēng)電項(xiàng)目投資計(jì)劃書
- 山東省醫(yī)療收費(fèi)目錄
- 在線開放課程申報(bào)書(成功申報(bào))
- JGT266-2011 泡沫混凝土標(biāo)準(zhǔn)規(guī)范
- 特種設(shè)備鍋爐日管控、周排查、月調(diào)度主要項(xiàng)目及內(nèi)容表
- 配電室運(yùn)行維護(hù)投標(biāo)方案(技術(shù)標(biāo))
- 快手申訴文本
評(píng)論
0/150
提交評(píng)論