版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
EVBatterySupply
ChainSustainability
Lifecycleimpactsandtheroleofrecycling
>
>
INTERNATIONALENERGY
AGENCY
TheIEAexaminesthefull
spectrum
ofenergyissues
includingoil,gasandcoalsupplyand
demand,renewableenergytechnologies,electricitymarkets,energyefficiency,
accesstoenergy,demandside
managementandmuchmore.Throughitswork,theIEAadvocates
policiesthatwillenhancethereliability,
affordabilityand
sustainabilityofenergyinits
32Membercountries,13Associationcountriesandbeyond.
Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationof
internationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.
Source:IEA.
InternationalEnergyAgencyWebsite:
IEAMembercountries:
AustraliaAustria
BelgiumCanada
CzechRepublic
DenmarkEstonia
Finland
France
GermanyGreece
HungaryIreland
Italy
Japan
Korea
Latvia
Lithuania
LuxembourgMexico
NetherlandsNewZealandNorway
Poland
Portugal
SlovakRepublicSpain
Sweden
Switzerland
RepublicofTürkiyeUnitedKingdom
UnitedStates
TheEuropean
CommissionalsoparticipatesintheworkoftheIEA
IEAAssociationcountries:
ArgentinaBrazil
China
Egypt
India
IndonesiaKenya
MoroccoSenegal
Singapore
SouthAfricaThailand
Ukraine
EVBatterySupplyChainSustainabilityHighlights
IEA.CCBY4.0.
PAGE|3
Highlights
Batterydemandissettocontinuegrowingfastbasedoncurrentpolicysettings,increasingfour-and-a-halftimesby2030andmorethanseventimesby2035.Theroleofemergingmarketsanddevelopingeconomies(EMDEs)otherthanPeople’sRepublicofChina(hereafter,“China”)isexpectedtogrow,reaching10%ofglobalbatterydemandby2030,upfrom3%in2023.Batteryproductionisalsoexpectedtodiversify,mostlythankstoinvestmentsinEuropeandNorthAmericaundercurrentpolicies,and–ifallannouncedclimatepledgesarefulfilled–throughlargerdemandandproductioninEMDEsotherthanChina.
Fromalifecycleperspective,theemissionsofamedium-sizebatteryelectriccararehalftheemissionsofanequivalentinternalcombustionengine(ICE)carasaglobalaverage.ThisdifferenceinemissionsissimilartotheglobalaverageinChina,largerintheUnitedKingdomandChile(over60%),andsmallerinIndia(20%).
Battery-relatedemissionsplayanotableroleinelectricvehicle(EV)lifecycleemissions,thoughtheyarenotthelargestcontributor.However,reducingemissionsrelatedtobatteryproductionandcriticalmineralprocessingremainsimportant.Emissionsrelatedtobatteriesandtheirsupplychainsaresettodeclinefurtherthankstotheelectrificationofproductionprocesses,increased
energydensityanduseofrecycledmaterials.
Inthenextdecade,recyclingwillbecriticaltorecovermaterialsfrommanufacturingscrap,andlookingfurtherahead,torecycleend-of-lifebatteriesandreducecriticalmineralsdemand,particularlyafter2035,whenthenumberofend-of-lifeEVbatterieswillstartgrowingrapidly.Ifrecyclingisscaledeffectively,recyclingcanreducelithiumandnickeldemandby25%,andcobaltdemandby40%in2050,inascenariothatmeetsnationalclimatetargets.Scalinguprecyclingfacilitiesandincreasingcollectionratesofend-of-lifebatterieswillbeessential.
Second-handEVscouldboostelectricmobilityinEMDEsotherthanChina.Strengtheninginternationalco-operationiscentraltosupportinternationaltradeofsecond-handEVswhileensuringadequateend-of-lifestrategiesforthevehiclesandtheirbatteries.
EVBatterySupplyChainSustainabilityAcknowledgements
IEA.CCBY4.0.
PAGE|4
Acknowledgements
EVBatterySupplyChainSustainabilitywaspreparedbytheEnergyTechnologyPolicy(ETP)DivisionoftheDirectorateofSustainability,TechnologyandOutlooks(STO)oftheInternationalEnergyAgency(IEA).TheprojectwasdesignedanddirectedbyTimurGül,ChiefEnergyTechnologyOfficer.AraceliFernandezPales,HeadoftheTechnologyInnovationUnit,providedstrategicguidancethroughoutthedevelopmentoftheproject.ElizabethConnellyco-ordinatedtheanalysisandproductionofthereport.
TheprincipalIEAauthorswereTeoLombardoandShobhanDhir.
ValuableinsightsandfeedbackwereprovidedbycolleaguesfromacrosstheIEA,includingHughHopewell,ApostolosPetropoulos,OskarasAl?auskasandMaxSchoenfisch.LizzieSayereditedthemanuscript.CharlotteBracke,AnnaKalista,MaoTakeuchiandPer-AndersWidellprovidedessentialsupportthroughouttheprocess.
ThanksgototheIEA’sCommunicationsandDigitalOffice,particularlytoJethroMullen,PoeliBojorquez,CurtisBrainard,JonCuster,AstridDumond,MerveErdil,GraceGordon,JuliaHorowitz,OliverJoy,LorenzoSquillace,LucileWallandWonjikYang.
ThereportwaspreparedbytheInternationalEnergyAgencyundertheGlobalE-MobilityProgrammefundedbytheGlobalEnvironmentFacility.TheworkcouldnothavebeenachievedwithoutthefinancialsupportprovidedbytheGlobalEnvironmentFacility.Inparticular,wewouldliketoacknowledgetheUnitedNationsEnvironmentProgrammeastheleadimplementingagencyundertheprogrammeandalltheireffortsinco-ordinatingthepreparations,planningandroll-outofitsactivities.
EVBatterySupplyChainSustainabilityTableofcontents
IEA.CCBY4.0.
PAGE|5
Tableofcontents
Theroleofbatteriesisexpectedtokeepgrowing 6
Electriccarsremainthemainengineofbatterydemandgrowth 6
Outlookforbatterydemandandproduction 8
TheimpactofEVsandbatteriesonemissions 12
Electriccarsofferemissionsbenefitstoday,evenwhenconsideredonalifecyclebasis 12
Batterychemistryimpactslifecycleemissions 15
Batteryrecyclingcanreducecriticalmineraldemandandimprovesustainability 17
Batteryrecyclingisgettingreadyforlargersuppliesinthe2030s 17
ImpactofusedEVexportsonrecycling 20
Policiestosupportbatterysustainabilityandcircularity 22
Currentpoliciesandinitiatives 22
Policyrecommendations 23
Annex 26
EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing
Theroleofbatteriesisexpectedtokeepgrowing
Electriccarsremainthemainengineofbatterydemandgrowth
GrowthinEVsalesandbatterystorage
1
installationscontinuetodrivebatterydemand,whichreached850GWhin2023,upmorethan40%from2022.EVsremainthemainsourceofbatterydemand,accountingfor750GWhoralmost90%ofthetotalin2023,withelectriccarsalonerepresentingabout80%oftotalbatterydemand.Batterystoragedemanddoubledinboth2022and2023,albeitfromalowerbasethandemandforEVbatteries.
OverallbatterydemandintheEuropeanUnionandtheUnitedStatesgrewfasterthantheglobalaveragein2023,reaching45%year-on-year,closelyfollowedbyChinaat40%.Intermsoftotalvolume,Chinaremainsthelargestbatterymarket,accountingforabout55%ofglobaldemandin2023,followedbytheEuropeanUnionandtheUnitedStates,atabout15%each.EMDEsotherthanChinatodayaccountforasmallshareoftotalbatterydemand,buttheirroleisexpanding.In2023,theirshareinglobalbatterydemandreachedmorethan3%,nearlydoublethatjust2yearsearlier.Indiaaccountedforalmostone-thirdofbatterydemandinEMDEsotherthanChina.
ThebatterystoragemarketisgrowingfastestinChina,wheredemandforbatterystoragesystemsreached45GWhin2023,almosttriplethedemandin2022.Demandforbatterystorageisdrivenbythegrowthinrenewableenergy,withChinainstallingmoreintermittentrenewablecapacitythantherestoftheworldcombinedin2023.IntheUnitedStatesandtheEuropeanUnion,thebatterystoragemarketgrewfasterthantheEVbatterymarket,butsignificantlyslowerthaninChina,withyear-on-yeargrowthofnearly65%andover80%,respectively.Thisisequivalenttoanadditional25GWhofbatterystorageintheUnitedStatesand12GWhintheEuropeanUnion.MarketsforbatterystoragearestillnascentinEMDEsotherthanChina,withlessthan1GWhintotaladdedin2023.MorethanhalfofthisdemandcamefromSoutheastAsia,followedbyAfricaandthen
1Batterystoragereferstobatteriesusedintheelectricitysector.Theyincludebothlargeutility-scaleandsmallerbehind-the-meterbatterystoragesystems.Utility-scalebatteriesareconnecteddirectlytotransmissionordistributionnetworks(front-of-the-meter)andtypicallyrangefromseveralhundredkWhtomultipleGWhinsize.Behind-the-meterbattery
storagesystemsaregenerallyinstalledatresidential,commercialorindustrialend-userlocations,withoutadedicatedconnectiontothegrid.Theyareusually(butnotalways)significantlysmallerthanutility-scalebatteries.
IEA.CCBY4.0.
PAGE|6
EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing
IEA.CCBY4.0.
PAGE|7
India,eachrepresentingashareofaround15%.Highercostofcapitalisamajorreasonforlowerbatterystorageinvestmentsinthoseregions,withthecostofcapitalforbatterystorageprojectsbeingatleast
twice
ashighasinadvancedeconomies.
Batterydemandbyapplicationandregion,2017-2023
GWh/year
Batterydemandbyapplication
900
800
700
600
500
400
300
200
100
0
2017201820192020202120222023
LDVTwo/three-wheelerBusTruckBatterystorage
Shareofbatterydemandbyregion
100%
80%
60%
40%
20%
0%
2017201820192020202120222023
ChinaEuropeanUnionUnitedStates
aEMDEs(exc.China)aOtherAEs
IEA.CCBY4.0.
Notes:LDV=light-dutyvehicle,includingcarsandvans;EMDEs(exc.China)=emergingmarketsanddevelopingeconomiesexcludingChina;AEs=Advancedeconomies.Batterystoragereferstothedemandfornewinstallations.
Source:IEA(2024),
GlobalEVOutlook2024.
In2023,EVsaccountedforover95%ofthebatterydemandinEMDEsotherthanChina,abovetheglobalaverage(almost90%).Anotherstrikingdifferencefromtheglobalaverageisthatarelativelylargeshare(about25%)ofEVbatterydemandinEMDEscamefromtwo-andthree-wheelers(2/3-wheelers)in2023,despitetheirbatteriesbeingbetween5andmorethan40timessmallerthantheaverageelectriccarbattery.Thiscomparestoa3%shareinChinaandlessthan0.5%intheEuropeanUnionandtheUnitedStates.
ThisunderlinesthepopularityandimportanceofthismodeoftransportinEMDEs,wheresalesofelectric2/3-wheelersoutsideofChinareached2millionin2023,over90%ofwhichwereinIndiaandSoutheastAsia,comparedtoelectriccarsalesofunder400000.InIndiaandSoutheastAsia,halfofpassengerkilometrestravelledonroadin2023wereby2/3-wheelers.Electrifying2/3-wheelersinthesecountriesorregionscouldthereforeofferaneffectivewaytoelectrifyalargeproportionofroadtransportthatislessbattery-intensivecomparedtoelectriccars.While2/3-wheelersandcarsprovideasimilarservice,electrifyingtheentirefleetof2/3-wheelersinIndiaandSoutheastAsiawouldrequireonly30%ofthebatteriesneededtoelectrifytheircurrentcarfleets,ifusingtheiraverageregionalbatterysizesin2023.InChina,salesof2/3-wheelersandelectriccarsin2023reachedmorethan6millionand8million,respectively,and2/3-wheelers
EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing
accountedforover15%ofpassengerkilometrestravelledonroad.Thiscomparestolessthan5%intheEuropeanUnion,andlessthan1%intheUnitedStatesinthesameyear.
Outlookforbatterydemandandproduction
Demandforbatteriesgrowsstronglyinallscenarios
Batterydemandissettogrowfour-and-a-halftimesby2030comparedto2023basedoncurrentpolicysettings(asreflectedintheIEA
StatedPoliciesScenario
[STEPS]),andmorethanseventimesby2035.Ifcountriesreachtheirannouncedclimateandenergypledgesinfull,asintheIEA
AnnouncedPledgesScenario
(APS),demandissignificantlyhigher,multiplyingbyfivetimesin2030andninetimesin2035.Demandgrowsevenmoreinascenarioconsistentwiththeenergysectorreachingnetzeroemissionsby2050,asintheIEA
NetZeroEmissionsby
2050Scenario
(NZEScenario),up7timesin2030and12timesin2035.Toputthisinperspective,thereismorebatterydemandperweekin2035intheAPSthantherewasintheentireyearof2019.
TheshareofEMDEsotherthanChinainglobalbatterydemandalsoincreasesthisdecade,morethantriplingtoreach10%by2030intheSTEPS.TheroleoftheseeconomiesisevengreaterintheAPS,withtheirshareofglobaldemandgrowingalmostfivefoldby2030,andmorethansixfoldin2035.ThisismostlydrivenbytransportelectrificationstrategiesandpledgesthatboostEVbatterydemand.Forexample,IndiasignedtheCOP26
declaration
toreacha100%salesshareofzero-emissionlight-dutyvehiclesby2040,andIndonesiahassetan
ambition
toreachastockof2millionelectriccarsand13millionelectricmotorbikesby2030.
Theroll-outofadequateinfrastructure,suchaschargers,battery-swappingstations,andflexibleelectricitytransmissionanddistributiongridswillbecrucialtosupportgrowthinEVuptake.As2/3-wheelersareapopularmodeofmobilityinsomeEMDEs,alargeshareofthepopulationcouldaccesselectricmobilitywithhomecharging,thusavoidingtheneedformorecapital-intensivededicatedchargers.
2
Battery-swappingfor2/3-wheelerscouldalsobeaneffectivesolutionto
boost
electricmobilityinurbanareas.
2Thebatterysizeofelectric2/3-wheelersisoftensmallenoughtorechargeathomefromaregulardomesticsocketwithoutinstallationofadedicatedcharger.
IEA.CCBY4.0.
PAGE|8
EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing
IEA.CCBY4.0.
PAGE|9
BatterydemandbymodeandbyregionintheStatedPoliciesScenario,AnnouncedPledgesScenarioandNetZeroEmissionsby2050Scenario,2023-2035
BymodeByregion
TWh/year
10
8
6
4
2
0
10
8
6
4
2
0
STEPS
APS
2030
NZE
NZESTEPSAPS
2023
2035
STEPS
APS
2030
NZE
NZESTEPSAPS
2023
2035
LDVTwo/three-wheelerBusTruckBatterystorage
China
UnitedStatesOtherAEs
UEuropeanUnion
UEMDEs(exc.China)Global
IEA.CCBY4.0.
Notes:STEPS=StatedPoliciesScenario;APS=AnnouncedPledgesScenario;NZE=NetZeroEmissionsby2050Scenario;LDV=light-dutyvehicle,includingcarsandvans;EMDEs(exc.China)=emergingmarketsanddevelopingeconomiesexcludingChina;AEs=Advancedeconomies.Batterystoragereferstothedemandfornewinstallations.
Source:IEA(2024),
GlobalEVOutlook2024.
EffortstoboostdomesticdemandforEVsandbatteriesinEMDEsotherthanChinawouldalsobebeneficialtoattractinvestmentsindomesticmanufacturing.Long-termvisibilityandclarityonpolicy,togetherwithsupportfordomesticdemandandproduction,arecentraltogivingconfidencetoinvestorstocommittonewprojects.
Batteryproductionsettodiversify
In2023,Chinaaccountedforthelion’sshareoftheproductionofbatterycells–morethanthree-quarters–aswellasofcriticalbatterycomponentslikecathode(over80%ofproduction)andanode(over90%)activematerials.IntheSTEPS,batterycellproductiondiversifies,mainlyasaresultofinvestmentsinNorthAmericaandEurope,withproductionoutsideChinaaccountingforalmost40%ofthetotalby2035.IntheAPS,alongsidehigherglobaldemand,batterymanufacturingdiversifiesfurther,thankstomuchlargerproductionofbatteriesinEMDEsotherthanChina,particularlyinIndia,SoutheastAsiaandNorthAfrica,togetherwithgreaterEVandEVbatterymanufacturinginEurope.
TheincreaseinproductioninEMDEsotherthanChinaisenabledbyhigherdomesticandglobaldemand,combinedwithlowerproductioncostsandaccesstocriticalminerals,attractinglargermanufacturinginvestmentsintheseregions.Forexample,aboutUSD15billionin
investment
inbatteryandbatterycomponentproductionhasbeenannouncedinMoroccothankstoitslargephosphate
EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing
reserves,
3
lowlabourcostandpotentiallycheaprenewableelectricity,andfreetradeagreements(FTAs)withtheUnitedStatesandtheEuropeanUnion.IndonesiahassignedmorethanadozendealsworthoverUSD15billionfor
investments
inbatteriesandEVs,andrecently
inaugurated
itsfirstbatterycellproductionplant.Ifallannouncedinvestmentscometofruition,asreflectedintheAPS,IndonesiawouldbecomealargeEVandbatteryproducer.
Similarly,theproductionofcathodeandanodeactivematerialdiversifies,butthereisalargergapbetweentheSTEPSandAPScomparedtobatterycellproduction.IntheSTEPS,Chinaremainsbyfarthelargestproducer,withKoreaandSoutheastAsiatogetherrepresentingthesecondlargestsourceofproduction,accountingforover15%ofcathodeand5%ofanodeactivematerialproductionby2035.IntheAPS,greaterdiversificationisdrivenbylargerproductionintheEuropeanUnionandtheUnitedStates,butalso,importantly,bymuchlargerproductioninEMDEssuchasIndiaand,forcathodematerials,NorthAfrica,andCentralandSouthAmerica.
Batteries
Cathodes
Anodes
BatteryandselectedcomponentproductionbycountryorregionintheStatedPoliciesScenarioandAnnouncedPledgesScenario,2023-2035
0.85TWh
6.2TWh
10.1TWh
0.85TWh
6.2TWh
10.1TWh
0.89TWh
6.5TWh
10.7TWh
2023
2035STEPS
2035APS
ChinaAdvancedeconomiesaEMDEs(exc.China)
IEA.CCBY4.0.
Notes:STEPS=StatedPoliciesScenario;APS=AnnouncedPledgesScenario;EMDEs(exc.China)=emergingmarketsanddevelopingeconomiesexcludingChina.BatteryreferstobatterycellsandincludesEVandbatterystorage.Anegative(anode)topositive(cathode)electroderatioof1.05isassumedforthefinalcells,whichimplies5%moreanodecapacitythancathodecapacitypercell.
Source:BasedonIEA(2024),
EnergyTechnologyPerspectives2024.
3Phosphateisakeycomponentoflithiumironphosphate(LFP)batteries.
IEA.CCBY4.0.
PAGE|10
EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing
IEA.CCBY4.0.
PAGE|11
Manyofthe
minerals
neededtosatisfygrowingbatterydemandareextractedinEMDEs,suchaslithiuminSouthAmericancountries,nickelinIndonesia,andcobaltintheDemocraticRepublicofCongo.However,despitetheirexcellentmineralandrenewableresources,EMDEsotherthanChinaaccountforlessthan5%ofannouncedbatterymanufacturingcapacity.Thisunderlinesthesignificantindustrial
opportunity
forEMDEstoplayabiggerroleintheEVandbatterysupplychain.Ensuring
appropriate
environmental,socialandgovernance(ESG)standardswillbeanecessarypreconditionforsustainableindustrialdevelopmentprojects.
EVBatterySupplyChainSustainabilityTheimpactofEVsandbatteriesonemissions
IEA.CCBY4.0.
PAGE|12
TheimpactofEVsandbatteriesonemissions
Electriccarsofferemissionsbenefitstoday,evenwhenconsideredonalifecyclebasis
Batteryelectricvehiclesareoftendescribedaszero-emissionsvehicles,thoughthisisonlytrueintermsofemissionswhilebeingdriven.Thereareemissionsassociatedwithvehicleandbatterymanufacturing,andwithproducingtheelectricityusedtorechargethevehicle.Electricandinternalcombustionenginevehicles(ICEVs)shouldbecomparedthroughlifecycleanalysis,whichincludestheemissionsassociatedwiththeproductionofthevehicle(andbattery)aswellasthewell-towheelemissions(i.e.well-to-tankandtank-to-wheelemissions).Underthislens,EVsremainlargelybeneficialcomparedtoICEVs,buttheextentoftheenvironmentalbenefitsdependsonregionalconditionssuchastheelectricitymix,drivinghabits,vehiclesizeandeventualbiofuelshare.
Forexample,asaglobalaverage,undercurrentpolicies,thelifecycleemissionsofamedium-sizebatteryelectriccarareabouthalfofthoseofanequivalentICEVthatisrunningonoil-basedfuels,morethan40%lowerthanforanequivalenthybridelectricvehicle(HEV),andabout30%lowerthanforaplug-inhybridelectricvehicle(PHEV)over15yearsofoperation,oraround200000km.TheenvironmentalgainofEVsisalsosettoincreaseovertimethankstothedecarbonisationofelectricitygrids.AselectricitygenerationdecarbonisesmorequicklyintheAPS,thesegapsincreasebyafurther3percentagepoints,withBEVlifecycleemissionsbeinglessthanhalfthoseofanICEV,45%lessthananHEV,andaboutathirdlessthanaPHEV.Whencomparingvehiclespurchasedin2035,asaglobalaverage,anICEVproducestwo-and-a-halftimestheemissionsofabatteryelectriccarintheSTEPS,andmorethanthreetimesasmanyintheAPS,overthevehiclelifetime.
EVBatterySupplyChainSustainabilityTheimpactofEVsandbatteriesonemissions
IEA.CCBY4.0.
PAGE|13
Comparisonofglobalaveragemedium-sizedcarlifecycleemissionsbypowertrainintheStatedPoliciesScenarioandAnnouncedPledgesScenario,2023-2035
tCO2-eq/vehicle
50
40
30
20
10
0
ICEVHEVPHEVBEV
2023
ICEVHEVPHEVBEV
2035STEPS
ICEVHEVPHEVBEV
2035APS
CarproductionBatteryproductionTank-to-wheelWell-to-tankGriddecarbonisationimpact
IEA.CCBY4.0.
Notes:STEPS=StatedPoliciesScenario;APS=AnnouncedPledgesScenario;ICEV=internalcombustionengine
vehicle;HEV=hybridelectricvehicle;PHEV=plug-inhybridelectricvehicle;BEV=batteryelectricvehicle.“Grid
decarbonisationimpact”referstotheeffectofelectricityemissionsintensityimprovementsoverthelifetimeofthevehicle
(STEPSusedforvehiclessoldin2023).Theyears2023and2035refertothefirstyearofuseofthevehicle.PHEV
assumesanaverageutilityfactorof40%i.e.40%ofkilometrestravelledinfullelectricmodeonaverage.Theimpactof
biofuel
blendingisnotconsideredinthisanalysis.Forfurtherdetailsontheassumptionsbehindthislifecycleanalysis,
pleaseseeAnnexBofthe
GlobalEVOutlook2024.
TheimpactofvaryingassumptionsisavailableintheIEA
EVLife
CycleAssessment
Calculator.
Source:IEA(2024),
GlobalEVOutlook2024.
Vehiclesizeplaysanimportantroleindetermininglifecycleemissions.Today,manyconsumersarechoosinglargervehiclesthanpreviously,promptedinpartbymodelavailability.Thoughsmallervehiclesareclearlypreferableintermsofbothproductionandoperationemissionsacrosspowertrains,thegreaterefficiencyofanelectricpowertrainmeanselectrificationmitigatesmuchofthenegativeimpactoflargervehicles.WhilesomelargeICESUVscanemitupto50%moreemissionsthanamedium-sizedICEcar,alargebatteryelectricSUVemitsonlyaround20%morethanamedium-sizedbatteryelectriccaroveritslifetime.ChoosingabatteryelectricSUVoveranICESUVrepresentsalifecycleemissionsavingofabout60%.Evencomparedtoamedium-sizeICEV,abatteryelectricSUVresultsin40%lowerlifecycleemissions.
ThelifecycleemissionsbenefitsofBEVsvarybyregion,depending,inparticular,onthelocalgridemissionsintensity,averageannualdrivingdistance,andfueleconomyofICEvehicles.Forexample,inChileandtheUnitedKingdom,thelifecycleemissionsofamedium-sizeBEVpurchasedin2023aremorethan60%lowerthanthoseofanICEV.IntheUnitedKingdomthegapbetweenICEVsandBEVsisprimarilydrivenbytherelativelylowandrapidlydecreasingemissionsintensityofelectricitygeneration.InChile,thegapbetweenICEVandBEVlifecycleemissionsisdrivenbyrelativelypoorICEVfuelefficiencyaswellastherapiddecarbonisationofthepowergrid,withtheaverageemissionintensityofpower
EVBatterySupplyChainSustainabilityTheimpactofEVsandbatteriesonemissions
IEA.CCBY4.0.
PAGE|14
gridsfallingbyaround70%by2035intheSTEPS.WhileBEVscanoffersubstantialemissionreductionswhenreplacingICEVs,vehicleelectrificationisnottheonlystrategytoreduceroadtransportemissions;theuseofbiofuels,forexample,couldreducethelifecycleemissionsofICEVs.
Lifecycleemissionsofamedium-sizedcarbypowertrainrelativetoagasolineinternalcombustionenginecarbyregionintheStatedPoliciesScenario,2023
EmissionsrelativetoICEV
100%
80%
60%
40%
20%
0%
ChileChinaIndiaUnitedKingdom
ICEVHEVPHEVBEV
IEA.CCBY4.0.
Notes:ICEV=internalcombustionenginevehicle;HEV=hybridelectricvehicle;PHEV=plug-inhybridelectricvehicle;
BEV=batteryelectricvehicle.Theyear2023referstothefirstyearofuseofthev
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州財(cái)經(jīng)職業(yè)學(xué)院《教師職業(yè)道德規(guī)范和政策法規(guī)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025陜西省建筑安全員C證考試題庫
- 貴陽學(xué)院《數(shù)據(jù)庫課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年河北省建筑安全員B證(項(xiàng)目經(jīng)理)考試題庫
- 廣州幼兒師范高等??茖W(xué)?!墩c非營利組織會(huì)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年-山西省安全員《C證》考試題庫
- 廣州醫(yī)科大學(xué)《大學(xué)生職業(yè)生涯規(guī)劃與就業(yè)指導(dǎo)(二)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年福建省安全員B證考試題庫附答案
- 2025陜西建筑安全員A證考試題庫附答案
- 2025年上海市安全員-C證考試(專職安全員)題庫及答案
- 中華傳統(tǒng)文化之文學(xué)瑰寶學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2023年外交學(xué)院招聘筆試備考試題及答案解析
- 機(jī)械制圖-三視圖
- GB/T 17516.1-1998V帶和多楔帶傳動(dòng)測定節(jié)面位置的動(dòng)態(tài)試驗(yàn)方法第1部分:V帶
- 供熱公司熱量管理辦法
- 致客戶通知函
- 各種預(yù)混料配方設(shè)計(jì)技術(shù)
- 12千伏環(huán)網(wǎng)柜(箱)標(biāo)準(zhǔn)化設(shè)計(jì)定制方案(2019版)
- 思想品德鑒定表(學(xué)生模板)
- 滿堂支架計(jì)算
- MA5680T開局配置
評(píng)論
0/150
提交評(píng)論