2025人教版物理重難點(diǎn)-選擇性必修一人教版物理重難點(diǎn)-必修三專題4.2 全反射(含答案)_第1頁(yè)
2025人教版物理重難點(diǎn)-選擇性必修一人教版物理重難點(diǎn)-必修三專題4.2 全反射(含答案)_第2頁(yè)
2025人教版物理重難點(diǎn)-選擇性必修一人教版物理重難點(diǎn)-必修三專題4.2 全反射(含答案)_第3頁(yè)
2025人教版物理重難點(diǎn)-選擇性必修一人教版物理重難點(diǎn)-必修三專題4.2 全反射(含答案)_第4頁(yè)
2025人教版物理重難點(diǎn)-選擇性必修一人教版物理重難點(diǎn)-必修三專題4.2 全反射(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩45頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025人教版物理重難點(diǎn)-選擇性必修一人教版物理重難點(diǎn)-必修三專題4.2全反射(含答案)專題4.2全反射【人教版】TOC\o"1-3"\t"正文,1"\h【題型1全反射】 【題型2生活中的全反射問(wèn)題】 【題型3高科技中的全反射】 【題型4半圓形玻璃磚與全反射】 【題型5求范圍、最值問(wèn)題】 【題型6三棱鏡與全反射】 【題型7全反射與色散】 【題型1全反射】【例1】?jī)墒煌l率的單色光a、b從空氣射入水中,發(fā)生了如圖所示的折射現(xiàn)象(α>β)。下列結(jié)論中正確的是()A.光束b的頻率比光束a低B.在水中的傳播速度,光束a比光束b小C.水對(duì)光束a的折射率比水對(duì)光束b的折射率小D.若光束從水中射向空氣,則光束b的臨界角比光束a的臨界角大【變式1-1】如圖是某種玻璃材料制成的空心圓柱體的截面圖,玻璃圓柱體的半徑為2R,空心部分是半徑為R的圓,兩圓同心。一束單色光(平行于截面)從圓柱體外表面上的A點(diǎn)以入射角i射入玻璃材料中,光束經(jīng)折射后恰好與內(nèi)圓面相切于B點(diǎn)。已知該玻璃材料對(duì)此單色光的折射率為eq\r(2)。(1)求入射角i;(2)欲使該光束從A點(diǎn)入射后,恰好在內(nèi)圓面上發(fā)生全反射,則入射角i′是多少?【變式1-2】(2021·海南高考)如圖,長(zhǎng)方體玻璃磚的橫截面為矩形MNPQ,MN=2NP,其折射率為eq\r(2)。一束單色光在紙面內(nèi)以α=45°的入射角從空氣射向MQ邊的中點(diǎn)O,則該束單色光()A.在MQ邊的折射角為60°B.在MN邊的入射角為45°C.不能從MN邊射出D.不能從NP邊射出【變式1-3】打磨某剖面如圖所示的寶石時(shí),必須將OP、OQ邊與軸線的夾角θ切磨在θ1<θ<θ2的范圍內(nèi),才能使從MN邊垂直入射的光線,在OP邊和OQ邊都發(fā)生全反射(僅考慮如圖所示的光線第一次射到OP邊并反射到OQ邊后射向MN邊的情況),則下列判斷正確的是()A.若θ>θ2,光線一定在OP邊發(fā)生全反射B.若θ>θ2,光線會(huì)從OQ邊射出C.若θ<θ1,光線會(huì)從OP邊射出D.若θ<θ1,光線會(huì)在OP邊發(fā)生全反射【題型2生活中的全反射問(wèn)題】【例2】單鏡頭反光相機(jī)簡(jiǎn)稱單反相機(jī),它用一塊放置在鏡頭與感光部件之間的透明平面鏡把來(lái)自鏡頭的圖象投射到對(duì)焦屏上.對(duì)焦屏上的圖象通過(guò)五棱鏡的反射進(jìn)入人眼中.如圖為單反照相機(jī)取景器的示意圖,ABCDE為五棱鏡的一個(gè)截面,AB⊥BC,光線垂直AB射入,分別在CD和EA上發(fā)生全反射,且兩次反射的入射角相等,最后光線垂直BC射出,則該五棱鏡折射率的最小值為()A.eq\f(1,sin22.5°)B.eq\f(1,cos22.5°)C.eq\f(\r(2),2)D.eq\r(2)【變式2-1】如圖,一小孩在河水清澈的河面上以1m/s的速度游泳,t=0時(shí)刻他看到自己正下方的河底有一小石塊,t=3s時(shí)他恰好看不到小石塊了,河水的折射率n=eq\f(4,3),下列說(shuō)法正確的是()A.3s后,小孩會(huì)再次看到河底的石塊B.前3s內(nèi),小孩看到的石塊越來(lái)越明亮C.這條河的深度為eq\r(7)mD.t=0時(shí)小孩看到的石塊深度為eq\f(4\r(7),3)m【變式2-2】很多公園的水池底都裝有彩燈,當(dāng)一細(xì)束由紅、藍(lán)兩色組成的燈光從水中斜射向空氣時(shí),關(guān)于光在水面可能發(fā)生的反射和折射現(xiàn)象,下列光路圖中正確的是()【變式2-3】一厚度為h的大平板玻璃水平放置,其下表面貼有一半徑為r的圓形發(fā)光面.在玻璃板上表面放置一半徑為R的圓紙片,圓紙片與圓形發(fā)光面的中心在同一豎直線上.已知圓紙片恰好能完全遮擋住從圓形發(fā)光面發(fā)出的光線(不考慮反射),求平板玻璃的折射率.【題型3高科技中的全反射】【例3】導(dǎo)光管采光系統(tǒng)是一套采集天然光,并經(jīng)管道傳輸?shù)绞覂?nèi)的采光系統(tǒng),如圖為過(guò)裝置中心軸線的截面。上面部分是收集陽(yáng)光的半徑為R的某種均勻透明材料的半球形采光球,O為球心,下面部分是內(nèi)側(cè)涂有反光涂層的導(dǎo)光管,MN為兩部分的分界面,M、N為球面兩點(diǎn)。若一束平行MN且與MN相距h=eq\f(\r(3),2)R的細(xì)光束從空氣入射到采光球表面時(shí),經(jīng)折射綠光恰好照射到N點(diǎn)。則()A.綠光在采光球中的傳播速度為eq\f(\r(3),2)cB.紅光一定能從N點(diǎn)上方射出C.紫光有可能直接折射經(jīng)過(guò)O點(diǎn)D.要使光束在導(dǎo)光管中發(fā)生全反射,涂層折射率應(yīng)小于管壁折射率【變式3-1】(2021·遼寧高考)一束復(fù)色光從空氣射入光導(dǎo)纖維后分成a、b兩束單色光,光路如圖所示,比較內(nèi)芯中的a、b兩束光,a光的()A.頻率小,發(fā)生全反射的臨界角小B.頻率大,發(fā)生全反射的臨界角小C.頻率小,發(fā)生全反射的臨界角大D.頻率大,發(fā)生全反射的臨界角大【變式3-2】如圖甲所示,為研究一半圓柱形透明新材料的光學(xué)性質(zhì),用激光由真空沿半圓柱體的徑向射入,入射光線與法線成θ角,由光學(xué)傳感器CD可以探測(cè)反射光的強(qiáng)度.實(shí)驗(yàn)獲得從AB面反射回來(lái)的反射光的強(qiáng)度隨θ角變化的情況如圖乙所示.光在真空中的傳播速度為c,則該激光在這種透明新材料中()A.折射率為eq\f(\r(3),2)B.傳播速度為eq\f(\r(3),2)cC.θ=0°時(shí),反射光強(qiáng)度為0D.反射光的強(qiáng)度隨θ角的增大而增大【變式3-3】如圖所示,光導(dǎo)纖維由內(nèi)芯和包層兩個(gè)同心圓柱體組成,其中心部分是內(nèi)芯,內(nèi)芯以外的部分為包層,光從一端進(jìn)入,從另一端射出,下列說(shuō)法正確的是()A.內(nèi)芯的折射率大于包層的折射率B.內(nèi)芯的折射率小于包層的折射率C.不同頻率的可見(jiàn)光從同一根光導(dǎo)纖維的一端傳輸?shù)搅硪欢怂玫臅r(shí)間相同D.若紫光以如圖所示角度入射時(shí),恰能在內(nèi)芯和包層分界面上發(fā)生全反射,則改用紅光以同樣角度入射時(shí),也能在內(nèi)芯和包層分界面上發(fā)生全反射【題型4半圓形玻璃磚與全反射】【例4】(2021·河北高考)將兩塊半徑均為R、完全相同的透明半圓柱體A、B正對(duì)放置,圓心上下錯(cuò)開(kāi)一定距離,如圖所示。用一束單色光沿半徑照射半圓柱體A,設(shè)圓心處入射角為θ。當(dāng)θ=60°時(shí),A右側(cè)恰好無(wú)光線射出;當(dāng)θ=30°時(shí),有光線沿B的半徑射出,射出位置與A的圓心相比下移h。不考慮多次反射。求:(1)半圓柱體對(duì)該單色光的折射率;(2)兩個(gè)半圓柱體之間的距離d?!咀兪?-1】(2021·江蘇高考)某種材料制成的半圓形透明磚平放在方格紙上,將激光束垂直于AC面射入,可以看到光束從圓弧面ABC出射,沿AC方向緩慢平移該磚,在如圖所示位置時(shí),出射光束恰好消失,該材料的折射率為()A.1.2B.1.4C.1.6 D.1.8【變式4-2】某同學(xué)用大頭針、三角板、量角器等器材測(cè)半圓形玻璃磚的折射率。開(kāi)始玻璃磚的位置如圖中實(shí)線所示,使大頭針P1、P2與圓心O在同一直線上,該直線垂直于玻璃磚的直徑邊,然后使玻璃磚繞圓心O緩慢轉(zhuǎn)動(dòng),同時(shí)在玻璃磚的直徑邊一側(cè)觀察P1、P2的像,且P2的像擋住P1的像。如此觀察,當(dāng)玻璃磚轉(zhuǎn)到圖中虛線位置時(shí),上述現(xiàn)象恰好消失。此時(shí)只需測(cè)量出____________________,即可計(jì)算出玻璃磚的折射率。請(qǐng)用你測(cè)量的量表示出折射率n=________。【變式4-3】如圖,一半徑為R的玻璃半球,O點(diǎn)是半球的球心,虛線OO′表示光軸(過(guò)球心O與半球底面垂直的直線).已知玻璃的折射率為1.5.現(xiàn)有一束平行光垂直入射到半球的底面上,有些光線能從球面射出(不考慮被半球的內(nèi)表面反射后的光線).求:(1)從球面射出的光線對(duì)應(yīng)的入射光線到光軸距離的最大值;(2)距光軸eq\f(R,3)的入射光線經(jīng)球面折射后與光軸的交點(diǎn)到O點(diǎn)的距離.【題型5求范圍、最值問(wèn)題】【例5】一半徑為R的半圓柱形玻璃磚,橫截面如圖所示.已知玻璃的全反射臨界角γ(γ<eq\f(π,3)).與玻璃磚的底平面成(eq\f(π,2)-γ)角度、且與玻璃磚橫截面平行的平行光射到玻璃磚的半圓柱面上.經(jīng)柱面折射后,有部分光(包括與柱面相切的入射光)能直接從玻璃磚底面射出.若忽略經(jīng)半圓柱內(nèi)表面反射后射出的光.求底面透光部分的寬度.【變式5-1】(多選)如圖所示,空氣中有一折射率為eq\r(2)的玻璃柱體,其橫截面是圓心角為90°、半徑為R的扇形,一束光平行于橫截面,以入射角θ照射到OA上,OB不透光。只考慮首次入射到圓弧上的光()A.若θ=45°,則AB面上最大的入射角大于45°B.若θ=45°,則AB面上最大的入射角為45°C.若θ=45°,則AB面上有光透出部分的弧長(zhǎng)為eq\f(1,4)πRD.若θ增大,則AB面上有光透出部分的弧長(zhǎng)變長(zhǎng)【變式5-2】如圖所示,截面為半圓形的玻璃磚的半徑為R,一束單色平行光向右垂直直面射向玻璃磚,在玻璃磚右側(cè)可看到圓弧面上有三分之二的區(qū)域被照亮.已知光在真空中的速度為c,求:(1)該玻璃磚對(duì)此單色光的折射率;(2)自不同點(diǎn)入射的光在玻璃磚中的傳播時(shí)間不同,計(jì)算得出最短傳播時(shí)間(不考慮光在玻璃磚內(nèi)的多次反射).【變式5-3】(多選)固定的半圓形玻璃磚的橫截面如圖,O點(diǎn)為圓心,OO′為直徑MN的垂線.足夠大的光屏PQ緊靠玻璃磚右側(cè)且垂直于MN.由A、B兩種單色光組成的一束光沿半徑方向射向O點(diǎn),入射光線與OO′夾角θ較小時(shí),光屏NQ區(qū)域出現(xiàn)兩個(gè)光斑,逐漸增大θ角,當(dāng)θ=α?xí)r,光屏NQ區(qū)域A光的光斑消失,繼續(xù)增大θ角,當(dāng)θ=β時(shí),光屏NQ區(qū)域B光的光斑消失,則()A.玻璃磚對(duì)A光的折射率比對(duì)B光的大B.A光在玻璃磚中傳播速度比B光的大C.α<θ<β時(shí),光屏上只有1個(gè)光斑D.β<θ<eq\f(π,2)時(shí),光屏上只有1個(gè)光斑【題型6三棱鏡與全反射】【例6】(2021·山東等級(jí)考)超強(qiáng)超短光脈沖產(chǎn)生方法曾獲諾貝爾物理學(xué)獎(jiǎng),其中用到的一種脈沖激光展寬器截面如圖所示。在空氣中對(duì)稱放置四個(gè)相同的直角三棱鏡,頂角為θ。一細(xì)束脈沖激光垂直第一個(gè)棱鏡左側(cè)面入射,經(jīng)過(guò)前兩個(gè)棱鏡后分為平行的光束,再經(jīng)過(guò)后兩個(gè)棱鏡重新合成為一束,此時(shí)不同頻率的光前后分開(kāi),完成脈沖展寬。已知相鄰兩棱鏡斜面間的距離d=100.0mm,脈沖激光中包含兩種頻率的光,它們?cè)诶忡R中的折射率分別為n1=eq\r(2)和n2=eq\f(\r(31),4)。取sin37°=eq\f(3,5),cos37°=eq\f(4,5),eq\f(5,\r(7))=1.890。(1)為使兩種頻率的光都能從左側(cè)第一個(gè)棱鏡斜面射出,求θ的取值范圍;(2)若θ=37°,求兩種頻率的光通過(guò)整個(gè)展寬器的過(guò)程中,在空氣中的路程差ΔL(保留3位有效數(shù)字)?!咀兪?-1】直角棱鏡的折射率n=1.5,其橫截面如圖所示,圖中∠C=90°,∠A=30°,截面內(nèi)一細(xì)束與BC邊平行的光線,從棱鏡AB邊上的D點(diǎn)射入,經(jīng)折射后射到BC邊上。(1)光線在BC邊上是否會(huì)發(fā)生全反射?說(shuō)明理由;(2)不考慮多次反射,求從AC邊射出的光線與最初的入射光線夾角的正弦值?!咀兪?-2】如圖所示,三角形ABC為某透明介質(zhì)的橫截面,O為BC邊的中點(diǎn),位于截面所在平面內(nèi)的一束光線自O(shè)以角i入射,第一次到達(dá)AB邊恰好發(fā)生全反射.已知θ=15°,BC邊長(zhǎng)為2L,該介質(zhì)的折射率為eq\r(2),求:(ⅰ)入射角i;(ⅱ)從入射到發(fā)生第一次全反射所用的時(shí)間(設(shè)光在真空中的速度為c,可能用到:sin75°=eq\f(\r(6)+\r(2),4)或tan15°=2-eq\r(3)).【變式6-3】(多選)截面為等腰直角三角形的三棱鏡如圖甲所示,DE為嵌在三棱鏡內(nèi)部緊貼BB′C′C面的線狀單色可見(jiàn)光光源,DE與三棱鏡的ABC面垂直,D位于線段BC的中點(diǎn),圖乙為圖甲中ABC面的正視圖,三棱鏡對(duì)該單色光的折射率為eq\r(2),只考慮由DE直接射向側(cè)面AA′C′C的光線.下列說(shuō)法正確的是()A.光從AA′C′C面出射的區(qū)域占該側(cè)面總面積的eq\f(1,2)B.光從AA′C′C面出射的區(qū)域占該側(cè)面總面積的eq\f(2,3)C.若DE發(fā)出的單色光頻率變小,AA′C′C面有光出射的區(qū)域面積將增大D.若DE發(fā)出的單色光頻率變小,AA′C′C面有光出射的區(qū)域面積將減小【題型7全反射與色散】【例7】一束白光從頂角為θ的一邊以較大的入射角i射入并通過(guò)三棱鏡后,在屏P上可得到彩色光帶,如圖所示,在入射角i逐漸減小到零的過(guò)程中,假如屏上的彩色光帶先后全部消失,則()A.紅光最先消失,紫光最后消失B.紫光最先消失,紅光最后消失C.紫光最先消失,黃光最后消失D.紅光最先消失,黃光最后消失【變式7-1】(多選)一束白光從水中射入真空的折射光線如圖所示,若保持入射點(diǎn)O不變而逐漸增大入射角,下述說(shuō)法中正確的是()A.若紅光射到P點(diǎn),則紫光在P點(diǎn)上方B.若紅光射到P點(diǎn),則紫光在P點(diǎn)下方C.紫光先發(fā)生全反射,而紅光后發(fā)生全反射D.當(dāng)紅光和紫光都發(fā)生全反射時(shí),它們的反射光線射到水底時(shí)是在同一點(diǎn)【變式7-2】一束復(fù)色光由空氣斜射向平行玻璃磚,入射角為θ,從另一側(cè)射出時(shí)分成a、b兩束單色光,如圖所示,下列說(shuō)法正確的是()A.在該玻璃中a的傳播速度比b小B.b比a更容易發(fā)生衍射C.增大θ(θ<90°),a、b可能不會(huì)從另一側(cè)射出D.a從該玻璃射向空氣時(shí)的臨界角比b的大【變式7-3】(多選)如圖,一束光沿半徑方向射向一塊半圓柱形玻璃磚,在玻璃磚底面上的入射角為θ,經(jīng)折射后射出a、b兩束光線.則________.A.在玻璃中,a光的傳播速度小于b光的傳播速度B.在真空中,a光的波長(zhǎng)小于b光的波長(zhǎng)C.玻璃磚對(duì)a光的折射率小于對(duì)b光的折射率D.若改變光束的入射方向使θ角逐漸變大,則折射光線a首先消失

參考答案【題型1全反射】【例1】?jī)墒煌l率的單色光a、b從空氣射入水中,發(fā)生了如圖所示的折射現(xiàn)象(α>β)。下列結(jié)論中正確的是()A.光束b的頻率比光束a低B.在水中的傳播速度,光束a比光束b小C.水對(duì)光束a的折射率比水對(duì)光束b的折射率小D.若光束從水中射向空氣,則光束b的臨界角比光束a的臨界角大解析:選C根據(jù)圖示和折射定律n=eq\f(sinθ1,sinθ2)可知,b光的折射率較大,則b的頻率較大,故A錯(cuò)誤,C正確;由n=eq\f(c,v)可知,b光的折射率較大,在同種介質(zhì)中傳播速度較小,即在水中的傳播速度,光束a比光束b大,故B錯(cuò)誤;由臨界角公式sinC=eq\f(1,n)分析得到,b光的折射率較大,對(duì)同種介質(zhì)的臨界角較小,故D錯(cuò)誤?!咀兪?-1】如圖是某種玻璃材料制成的空心圓柱體的截面圖,玻璃圓柱體的半徑為2R,空心部分是半徑為R的圓,兩圓同心。一束單色光(平行于截面)從圓柱體外表面上的A點(diǎn)以入射角i射入玻璃材料中,光束經(jīng)折射后恰好與內(nèi)圓面相切于B點(diǎn)。已知該玻璃材料對(duì)此單色光的折射率為eq\r(2)。(1)求入射角i;(2)欲使該光束從A點(diǎn)入射后,恰好在內(nèi)圓面上發(fā)生全反射,則入射角i′是多少?解析:(1)由題意,設(shè)折射角為r,由幾何關(guān)系得:sinr=eq\f(BO,AO)=eq\f(R,2R)=0.5,根據(jù)折射定律:n=eq\f(sini,sinr)解得i=45°。(2)設(shè)在A點(diǎn)的入射角為i′時(shí),光束經(jīng)折射后到達(dá)內(nèi)圓面上C點(diǎn),并在C點(diǎn)恰發(fā)生全反射,則光束在內(nèi)圓面上的入射角∠ACD恰等于臨界角θ,如圖所示,又sinθ=eq\f(1,n)=eq\f(\r(2),2),解得∠ACD=θ=45°根據(jù)正弦定理得:eq\f(sin∠ACD,AO)=eq\f(sin∠CAO,CO)解得sin∠CAO=eq\f(\r(2),4)根據(jù)折射定律:n=eq\f(sini′,sin∠CAO)解得i′=30°。答案:(1)45°(2)30°【變式1-2】(2021·海南高考)如圖,長(zhǎng)方體玻璃磚的橫截面為矩形MNPQ,MN=2NP,其折射率為eq\r(2)。一束單色光在紙面內(nèi)以α=45°的入射角從空氣射向MQ邊的中點(diǎn)O,則該束單色光()A.在MQ邊的折射角為60°B.在MN邊的入射角為45°C.不能從MN邊射出D.不能從NP邊射出解析:選C光線從O點(diǎn)入射,設(shè)折射角為β,由折射定律得sinα=nsinβ,解得β=30°,即在MQ邊的折射角為30°,故A錯(cuò)誤;設(shè)邊長(zhǎng)NP=l,則MN=2l,作出折射后的光路圖如圖所示,由幾何關(guān)系可知光在MN邊的入射角為60°,故B錯(cuò)誤;光從光密介質(zhì)射入光疏介質(zhì)發(fā)生全反射的臨界角設(shè)為θ,有sinθ=eq\f(1,n)=eq\f(\r(2),2),即θ=45°,而MN邊的入射角為60°>45°,故光在MN邊發(fā)生全反射,即不能從MN邊射出,故C正確;根據(jù)幾何關(guān)系可知光在A點(diǎn)發(fā)生全反射后到達(dá)NP邊的B點(diǎn),根據(jù)光的折射的可逆性可知,光從NP邊的B點(diǎn)折射后的折射角為45°,故D錯(cuò)誤。【變式1-3】打磨某剖面如圖所示的寶石時(shí),必須將OP、OQ邊與軸線的夾角θ切磨在θ1<θ<θ2的范圍內(nèi),才能使從MN邊垂直入射的光線,在OP邊和OQ邊都發(fā)生全反射(僅考慮如圖所示的光線第一次射到OP邊并反射到OQ邊后射向MN邊的情況),則下列判斷正確的是()A.若θ>θ2,光線一定在OP邊發(fā)生全反射B.若θ>θ2,光線會(huì)從OQ邊射出C.若θ<θ1,光線會(huì)從OP邊射出D.若θ<θ1,光線會(huì)在OP邊發(fā)生全反射答案D解析全反射的條件:sinC=eq\f(1,n),90°-θ>C,θ越小越容易發(fā)生全反射,選項(xiàng)A、C錯(cuò)誤,選項(xiàng)D正確.θ較大時(shí),已從OP邊射出,選項(xiàng)B錯(cuò)誤.【題型2生活中的全反射問(wèn)題】【例2】單鏡頭反光相機(jī)簡(jiǎn)稱單反相機(jī),它用一塊放置在鏡頭與感光部件之間的透明平面鏡把來(lái)自鏡頭的圖象投射到對(duì)焦屏上.對(duì)焦屏上的圖象通過(guò)五棱鏡的反射進(jìn)入人眼中.如圖為單反照相機(jī)取景器的示意圖,ABCDE為五棱鏡的一個(gè)截面,AB⊥BC,光線垂直AB射入,分別在CD和EA上發(fā)生全反射,且兩次反射的入射角相等,最后光線垂直BC射出,則該五棱鏡折射率的最小值為()A.eq\f(1,sin22.5°)B.eq\f(1,cos22.5°)C.eq\f(\r(2),2)D.eq\r(2)答案A解析設(shè)射入CD面上的入射角為θ,因?yàn)樵贑D和EA上發(fā)生全反射,且兩次反射的入射角相等,光路圖如圖,根據(jù)幾何知識(shí)有4θ=90°解得θ=22.5°當(dāng)光剛好在CD和AE面上發(fā)生全反射時(shí)折射率最小,則有臨界角C=θ,則有sinθ=eq\f(1,n)解得最小折射率為n=eq\f(1,sin22.5°),A正確.【變式2-1】如圖,一小孩在河水清澈的河面上以1m/s的速度游泳,t=0時(shí)刻他看到自己正下方的河底有一小石塊,t=3s時(shí)他恰好看不到小石塊了,河水的折射率n=eq\f(4,3),下列說(shuō)法正確的是()A.3s后,小孩會(huì)再次看到河底的石塊B.前3s內(nèi),小孩看到的石塊越來(lái)越明亮C.這條河的深度為eq\r(7)mD.t=0時(shí)小孩看到的石塊深度為eq\f(4\r(7),3)m解析:選Ct=3s時(shí)他恰好看不到小石塊了,說(shuō)明在此位置從小石塊射到水面的光發(fā)生了全反射,則3s后的位置從小石塊射到水面的光仍發(fā)生全反射,A錯(cuò)誤;前3s內(nèi),從小石塊上射向水面的光折射光線逐漸減弱,反射光逐漸增強(qiáng),可知小孩看到的石塊越來(lái)越暗,B錯(cuò)誤;由于sinC=eq\f(1,n)=eq\f(3,4),則tanC=eq\f(3,\r(7)),可知水深h=eq\f(vt,tanC)=eq\f(3,\f(3,\r(7)))m=eq\r(7)m,C正確;t=0時(shí)小孩看到的石塊深度為h′=eq\f(h,n)=eq\f(3\r(7),4)m,D錯(cuò)誤?!咀兪?-2】很多公園的水池底都裝有彩燈,當(dāng)一細(xì)束由紅、藍(lán)兩色組成的燈光從水中斜射向空氣時(shí),關(guān)于光在水面可能發(fā)生的反射和折射現(xiàn)象,下列光路圖中正確的是()答案C解析紅光、藍(lán)光都要發(fā)生反射,紅光的折射率較小,根據(jù)sinC=eq\f(1,n)可知紅光發(fā)生全反射的臨界角比藍(lán)光大,所以藍(lán)光發(fā)生全反射時(shí),紅光不一定發(fā)生,故C正確.【變式2-3】一厚度為h的大平板玻璃水平放置,其下表面貼有一半徑為r的圓形發(fā)光面.在玻璃板上表面放置一半徑為R的圓紙片,圓紙片與圓形發(fā)光面的中心在同一豎直線上.已知圓紙片恰好能完全遮擋住從圓形發(fā)光面發(fā)出的光線(不考慮反射),求平板玻璃的折射率.答案見(jiàn)解析解析如圖所示,考慮從圓形發(fā)光面邊緣的A點(diǎn)發(fā)出的一條光線,假設(shè)它斜射到玻璃上表面的A′點(diǎn)發(fā)生折射,根據(jù)折射定律有nsinθ=sinα式中,n是玻璃的折射率,θ是入射角,α是折射角.現(xiàn)假設(shè)A′恰好在紙片邊緣,由題意,在A′點(diǎn)剛好發(fā)生全反射,故sinθ=sinC=eq\f(1,n)設(shè)AA′線段在玻璃上表面的投影長(zhǎng)為L(zhǎng),由幾何關(guān)系有sinθ=eq\f(L,\r(L2+h2))由題意,紙片的半徑應(yīng)為R=L+r聯(lián)立以上各式得n=eq\r(1+\b\lc\(\rc\)(\a\vs4\al\co1(\f(h,R-r)))2)【題型3高科技中的全反射】【例3】導(dǎo)光管采光系統(tǒng)是一套采集天然光,并經(jīng)管道傳輸?shù)绞覂?nèi)的采光系統(tǒng),如圖為過(guò)裝置中心軸線的截面。上面部分是收集陽(yáng)光的半徑為R的某種均勻透明材料的半球形采光球,O為球心,下面部分是內(nèi)側(cè)涂有反光涂層的導(dǎo)光管,MN為兩部分的分界面,M、N為球面兩點(diǎn)。若一束平行MN且與MN相距h=eq\f(\r(3),2)R的細(xì)光束從空氣入射到采光球表面時(shí),經(jīng)折射綠光恰好照射到N點(diǎn)。則()A.綠光在采光球中的傳播速度為eq\f(\r(3),2)cB.紅光一定能從N點(diǎn)上方射出C.紫光有可能直接折射經(jīng)過(guò)O點(diǎn)D.要使光束在導(dǎo)光管中發(fā)生全反射,涂層折射率應(yīng)小于管壁折射率解析:選B如圖所示,根據(jù)幾何關(guān)系sinα=eq\f(h,R)=eq\f(\r(3),2),α=2θ,折射率n=eq\f(sinα,sinθ)=eq\r(3),綠光在采光球中的傳播速度為v=eq\f(c,n)=eq\f(\r(3),3)c,故A錯(cuò)誤;紅光折射率小,折射角大,則紅光一定能從N點(diǎn)上方射出,故B正確;紫光不可能直接折射經(jīng)過(guò)O點(diǎn),如果直接經(jīng)過(guò)O點(diǎn),折射角為0°,故C錯(cuò)誤;光由光密介質(zhì)到光疏介質(zhì)可能發(fā)生全反射,則涂層折射率應(yīng)大于管壁折射率,故D錯(cuò)誤?!咀兪?-1】(2021·遼寧高考)一束復(fù)色光從空氣射入光導(dǎo)纖維后分成a、b兩束單色光,光路如圖所示,比較內(nèi)芯中的a、b兩束光,a光的()A.頻率小,發(fā)生全反射的臨界角小B.頻率大,發(fā)生全反射的臨界角小C.頻率小,發(fā)生全反射的臨界角大D.頻率大,發(fā)生全反射的臨界角大解析:選C由光路圖可知a光的偏折程度沒(méi)有b光的大,因此a光的折射率小,頻率小,由sinC=eq\f(1,n)可知折射率越小發(fā)生全反射的臨界角越大,故C正確?!咀兪?-2】如圖甲所示,為研究一半圓柱形透明新材料的光學(xué)性質(zhì),用激光由真空沿半圓柱體的徑向射入,入射光線與法線成θ角,由光學(xué)傳感器CD可以探測(cè)反射光的強(qiáng)度.實(shí)驗(yàn)獲得從AB面反射回來(lái)的反射光的強(qiáng)度隨θ角變化的情況如圖乙所示.光在真空中的傳播速度為c,則該激光在這種透明新材料中()A.折射率為eq\f(\r(3),2)B.傳播速度為eq\f(\r(3),2)cC.θ=0°時(shí),反射光強(qiáng)度為0D.反射光的強(qiáng)度隨θ角的增大而增大答案B解析據(jù)題圖乙知θ=60°時(shí)激光發(fā)生全反射,由折射定律得n=eq\f(1,sin60°)=eq\f(2\r(3),3),故A錯(cuò)誤;由速度公式得v=eq\f(c,n)=eq\f(\r(3),2)c,故B正確;θ=0°時(shí)大量的激光從O點(diǎn)射出,少量激光發(fā)生反射,故C錯(cuò)誤;根據(jù)題圖乙可知當(dāng)θ=60°時(shí)激光發(fā)生全反射,此后θ角增大,但反射光的強(qiáng)度不變,故D錯(cuò)誤.【變式3-3】如圖所示,光導(dǎo)纖維由內(nèi)芯和包層兩個(gè)同心圓柱體組成,其中心部分是內(nèi)芯,內(nèi)芯以外的部分為包層,光從一端進(jìn)入,從另一端射出,下列說(shuō)法正確的是()A.內(nèi)芯的折射率大于包層的折射率B.內(nèi)芯的折射率小于包層的折射率C.不同頻率的可見(jiàn)光從同一根光導(dǎo)纖維的一端傳輸?shù)搅硪欢怂玫臅r(shí)間相同D.若紫光以如圖所示角度入射時(shí),恰能在內(nèi)芯和包層分界面上發(fā)生全反射,則改用紅光以同樣角度入射時(shí),也能在內(nèi)芯和包層分界面上發(fā)生全反射答案A解析光導(dǎo)纖維是依據(jù)全反射原理工作的,內(nèi)芯的折射率大于包層的折射率,選項(xiàng)A正確,B錯(cuò)誤;不同頻率的可見(jiàn)光在同一介質(zhì)中的傳播速度不同,從同一根光導(dǎo)纖維的一端傳輸?shù)搅硪欢怂玫臅r(shí)間一般不相同,選項(xiàng)C錯(cuò)誤;若將紫光改用紅光也以同樣角度入射時(shí),由于紅光臨界角大于紫光,所以不能在內(nèi)芯和包層分界面上發(fā)生全反射,選項(xiàng)D錯(cuò)誤.【題型4半圓形玻璃磚與全反射】【例4】(2021·河北高考)將兩塊半徑均為R、完全相同的透明半圓柱體A、B正對(duì)放置,圓心上下錯(cuò)開(kāi)一定距離,如圖所示。用一束單色光沿半徑照射半圓柱體A,設(shè)圓心處入射角為θ。當(dāng)θ=60°時(shí),A右側(cè)恰好無(wú)光線射出;當(dāng)θ=30°時(shí),有光線沿B的半徑射出,射出位置與A的圓心相比下移h。不考慮多次反射。求:(1)半圓柱體對(duì)該單色光的折射率;(2)兩個(gè)半圓柱體之間的距離d。解析:(1)光從半圓柱體A射入,滿足光從光密介質(zhì)到光疏介質(zhì),當(dāng)θ=60°時(shí)發(fā)生全反射,有sinθ=eq\f(1,n)解得n=eq\f(2\r(3),3)。(2)當(dāng)入射角θ=30°,經(jīng)兩次折射沿半圓柱體B的半徑射出,設(shè)折射角為r,光路如圖所示由折射定律有n=eq\f(sinr,sinθ)由幾何關(guān)系有tanr=eq\f(h-Rsinθ,d)聯(lián)立解得d=eq\r(2)eq\b\lc\(\rc\)(\a\vs4\al\co1(h-\f(R,2)))。答案:(1)eq\f(2\r(3),3)(2)eq\r(2)eq\b\lc\(\rc\)(\a\vs4\al\co1(h-\f(R,2)))【變式4-1】(2021·江蘇高考)某種材料制成的半圓形透明磚平放在方格紙上,將激光束垂直于AC面射入,可以看到光束從圓弧面ABC出射,沿AC方向緩慢平移該磚,在如圖所示位置時(shí),出射光束恰好消失,該材料的折射率為()A.1.2B.1.4C.1.6 D.1.8解析:選A畫(huà)出激光束從玻璃磚射出時(shí)恰好發(fā)生全反射的入射角,如圖所示。由全反射的條件得sinθ=eq\f(1,n),由幾何關(guān)系知sinθ=eq\f(5,6),聯(lián)立解得n=1.2,故A正確,B、C、D錯(cuò)誤?!咀兪?-2】某同學(xué)用大頭針、三角板、量角器等器材測(cè)半圓形玻璃磚的折射率。開(kāi)始玻璃磚的位置如圖中實(shí)線所示,使大頭針P1、P2與圓心O在同一直線上,該直線垂直于玻璃磚的直徑邊,然后使玻璃磚繞圓心O緩慢轉(zhuǎn)動(dòng),同時(shí)在玻璃磚的直徑邊一側(cè)觀察P1、P2的像,且P2的像擋住P1的像。如此觀察,當(dāng)玻璃磚轉(zhuǎn)到圖中虛線位置時(shí),上述現(xiàn)象恰好消失。此時(shí)只需測(cè)量出____________________,即可計(jì)算出玻璃磚的折射率。請(qǐng)用你測(cè)量的量表示出折射率n=________。解析:玻璃磚轉(zhuǎn)動(dòng)時(shí),射在其直徑所在平面內(nèi)的光線的入射角增大,當(dāng)增大到等于臨界角C時(shí),發(fā)生全反射現(xiàn)象。因sinC=eq\f(1,n),可見(jiàn)只要測(cè)出臨界角即可求得折射率n,而C和玻璃磚直徑繞O點(diǎn)轉(zhuǎn)過(guò)的角度θ相等,因此只要測(cè)出玻璃磚直徑邊繞O點(diǎn)轉(zhuǎn)過(guò)的角度θ即可。答案:玻璃磚直徑邊繞O點(diǎn)轉(zhuǎn)過(guò)的角度θeq\f(1,sinθ)【變式4-3】如圖,一半徑為R的玻璃半球,O點(diǎn)是半球的球心,虛線OO′表示光軸(過(guò)球心O與半球底面垂直的直線).已知玻璃的折射率為1.5.現(xiàn)有一束平行光垂直入射到半球的底面上,有些光線能從球面射出(不考慮被半球的內(nèi)表面反射后的光線).求:(1)從球面射出的光線對(duì)應(yīng)的入射光線到光軸距離的最大值;(2)距光軸eq\f(R,3)的入射光線經(jīng)球面折射后與光軸的交點(diǎn)到O點(diǎn)的距離.答案(1)eq\f(2,3)R(2)2.74R解析(1)如圖甲,從底面上A處射入的光線,在球面上發(fā)生折射時(shí)的入射角為i,當(dāng)i等于全反射臨界角ic時(shí),對(duì)應(yīng)入射光線到光軸的距離最大,設(shè)最大距離為l.i=ic①設(shè)n是玻璃的折射率,由全反射臨界角的定義有nsinic=1②由幾何關(guān)系有sinic=eq\f(l,R)③聯(lián)立①②③式并利用題給條件,得l=eq\f(2,3)R④(2)如圖乙,設(shè)與光軸相距eq\f(R,3)的光線在球面B點(diǎn)發(fā)生折射時(shí)的入射角和折射角分別為i1和r1,由折射定律有nsini1=sinr1⑤設(shè)折射光線與光軸的交點(diǎn)為C,在△OBC中,由正弦定理有eq\f(sin∠C,R)=eq\f(sin180°-r1,OC)⑥由幾何關(guān)系有∠C=r1-i1⑦sini1=eq\f(1,3)⑧聯(lián)立⑤⑥⑦⑧式及題給條件得OC=eq\f(32\r(2)+\r(3),5)R≈2.74R.【題型5求范圍、最值問(wèn)題】【例5】一半徑為R的半圓柱形玻璃磚,橫截面如圖所示.已知玻璃的全反射臨界角γ(γ<eq\f(π,3)).與玻璃磚的底平面成(eq\f(π,2)-γ)角度、且與玻璃磚橫截面平行的平行光射到玻璃磚的半圓柱面上.經(jīng)柱面折射后,有部分光(包括與柱面相切的入射光)能直接從玻璃磚底面射出.若忽略經(jīng)半圓柱內(nèi)表面反射后射出的光.求底面透光部分的寬度.答案見(jiàn)解析解析光路圖如圖所示,沿半徑方向射入玻璃磚的光線,即光線①射到MN上時(shí),根據(jù)幾何知識(shí),入射角恰好等于臨界角,即恰好在圓心O處發(fā)生全反射,光線①左側(cè)的光線,經(jīng)球面折射后,射到MN上的角一定大于臨界角,即在MN上發(fā)生全反射,不能射出,光線①右側(cè)的光線射到MN上的角小于臨界角,可以射出,光線③與球面相切,入射角θ1=90°,折射角即為γ,從MN上垂直射出.根據(jù)幾何知識(shí),底面透光部分的寬度OE=Rsinγ.【變式5-1】(多選)如圖所示,空氣中有一折射率為eq\r(2)的玻璃柱體,其橫截面是圓心角為90°、半徑為R的扇形,一束光平行于橫截面,以入射角θ照射到OA上,OB不透光。只考慮首次入射到圓弧上的光()A.若θ=45°,則AB面上最大的入射角大于45°B.若θ=45°,則AB面上最大的入射角為45°C.若θ=45°,則AB面上有光透出部分的弧長(zhǎng)為eq\f(1,4)πRD.若θ增大,則AB面上有光透出部分的弧長(zhǎng)變長(zhǎng)解析:選AC若θ=45°,根據(jù)折射定律有eq\f(sin45°,sinr)=eq\r(2),可得光進(jìn)入玻璃后光線與OB的夾角為30°,過(guò)O點(diǎn)的光線垂直入射到AB界面上的點(diǎn)C,如圖所示,C到B之間沒(méi)有光線射出;越接近A的光線入射到AB界面上時(shí)的入射角越大,可知AB面上最大的入射角大于45°,故A正確,B錯(cuò)誤。若θ=45°,根據(jù)sinC=eq\f(1,\r(2)),得臨界角為45°;如果AB界面上的臨界點(diǎn)為D,此光線在AO界面上點(diǎn)E入射,在三角形ODE中可求得OD與OA的夾角為180°-45°-120°=15°,A到D之間沒(méi)有光線射出,由此可得有光線射出的圓弧對(duì)應(yīng)圓心角為90°-(30°+15°)=45°,有光透出部分的弧長(zhǎng)為l=eq\f(45°,360°)·2πR=eq\f(1,4)πR,故C正確。增大θ,則折射角也增大,根據(jù)幾何關(guān)系,設(shè)折射角為α,則有光線射出的部分對(duì)應(yīng)的圓心角為90°-α-[180°-45°-(90°+α)]=45°,可知對(duì)應(yīng)的弧長(zhǎng)不變,故D錯(cuò)誤?!咀兪?-2】如圖所示,截面為半圓形的玻璃磚的半徑為R,一束單色平行光向右垂直直面射向玻璃磚,在玻璃磚右側(cè)可看到圓弧面上有三分之二的區(qū)域被照亮.已知光在真空中的速度為c,求:(1)該玻璃磚對(duì)此單色光的折射率;(2)自不同點(diǎn)入射的光在玻璃磚中的傳播時(shí)間不同,計(jì)算得出最短傳播時(shí)間(不考慮光在玻璃磚內(nèi)的多次反射).答案(1)eq\f(2\r(3),3)(2)eq\f(\r(3)R,3c)解析(1)由幾何關(guān)系可得,此單色光在玻璃磚中全反射的臨界角C=eq\f(1,2)×eq\f(2,3)×180°=60°又sinC=eq\f(1,n)得該玻璃磚對(duì)此單色光的折射率n=eq\f(2\r(3),3)(2)光在玻璃磚中的最短傳播距離x=Rcos60°又n=eq\f(c,v)x=vt得最短傳播時(shí)間t=eq\f(\r(3)R,3c)【變式5-3】(多選)固定的半圓形玻璃磚的橫截面如圖,O點(diǎn)為圓心,OO′為直徑MN的垂線.足夠大的光屏PQ緊靠玻璃磚右側(cè)且垂直于MN.由A、B兩種單色光組成的一束光沿半徑方向射向O點(diǎn),入射光線與OO′夾角θ較小時(shí),光屏NQ區(qū)域出現(xiàn)兩個(gè)光斑,逐漸增大θ角,當(dāng)θ=α?xí)r,光屏NQ區(qū)域A光的光斑消失,繼續(xù)增大θ角,當(dāng)θ=β時(shí),光屏NQ區(qū)域B光的光斑消失,則()A.玻璃磚對(duì)A光的折射率比對(duì)B光的大B.A光在玻璃磚中傳播速度比B光的大C.α<θ<β時(shí),光屏上只有1個(gè)光斑D.β<θ<eq\f(π,2)時(shí),光屏上只有1個(gè)光斑答案AD解析當(dāng)入射角θ逐漸增大時(shí),A光的光斑先消失,說(shuō)明A光的折射角大于B光的折射角,即玻璃對(duì)A光的折射率大于對(duì)B光的折射率(nA>nB),所以fA>fB,vA<vB,選項(xiàng)A正確,B錯(cuò)誤.當(dāng)A光、B光都發(fā)生全反射時(shí),光屏上只有1個(gè)光斑,選項(xiàng)C錯(cuò)誤,D正確.【題型6三棱鏡與全反射】【例6】(2021·山東等級(jí)考)超強(qiáng)超短光脈沖產(chǎn)生方法曾獲諾貝爾物理學(xué)獎(jiǎng),其中用到的一種脈沖激光展寬器截面如圖所示。在空氣中對(duì)稱放置四個(gè)相同的直角三棱鏡,頂角為θ。一細(xì)束脈沖激光垂直第一個(gè)棱鏡左側(cè)面入射,經(jīng)過(guò)前兩個(gè)棱鏡后分為平行的光束,再經(jīng)過(guò)后兩個(gè)棱鏡重新合成為一束,此時(shí)不同頻率的光前后分開(kāi),完成脈沖展寬。已知相鄰兩棱鏡斜面間的距離d=100.0mm,脈沖激光中包含兩種頻率的光,它們?cè)诶忡R中的折射率分別為n1=eq\r(2)和n2=eq\f(\r(31),4)。取sin37°=eq\f(3,5),cos37°=eq\f(4,5),eq\f(5,\r(7))=1.890。(1)為使兩種頻率的光都能從左側(cè)第一個(gè)棱鏡斜面射出,求θ的取值范圍;(2)若θ=37°,求兩種頻率的光通過(guò)整個(gè)展寬器的過(guò)程中,在空氣中的路程差ΔL(保留3位有效數(shù)字)。解析:(1)設(shè)C是全反射的臨界角,光線在第一個(gè)三棱鏡右側(cè)斜面上恰好發(fā)生全反射時(shí),根據(jù)折射定律得sinC=eq\f(1,n) ①代入較大的折射率得C=45° ②所以頂角θ的范圍為0<θ<45°(或θ<45°)。③(2)脈沖激光從第一個(gè)三棱鏡右側(cè)斜面射出時(shí)發(fā)生折射,設(shè)折射角分別為α1和α2,由折射定律得n1=eq\f(sinα1,sinθ) ④n2=eq\f(sinα2,sinθ) ⑤設(shè)兩束光在前兩個(gè)三棱鏡斜面之間的路程分別為L(zhǎng)1和L2,則L1=eq\f(d,cosα1)⑥L2=eq\f(d,cosα2) ⑦ΔL=2(L1-L2) ⑧聯(lián)立④⑤⑥⑦⑧式,代入數(shù)據(jù)得ΔL≈14.4mm。⑨答案:(1)0<θ<45°(或θ<45°)(2)14.4mm【變式6-1】直角棱鏡的折射率n=1.5,其橫截面如圖所示,圖中∠C=90°,∠A=30°,截面內(nèi)一細(xì)束與BC邊平行的光線,從棱鏡AB邊上的D點(diǎn)射入,經(jīng)折射后射到BC邊上。(1)光線在BC邊上是否會(huì)發(fā)生全反射?說(shuō)明理由;(2)不考慮多次反射,求從AC邊射出的光線與最初的入射光線夾角的正弦值。解析:(1)如圖,設(shè)光線在D點(diǎn)的入射角為i,折射角為r。折射光線射到BC邊上的E點(diǎn)。設(shè)光線在E點(diǎn)的入射角為θ,由幾何關(guān)系,有θ=90°-(30°-r)>60° ①根據(jù)題給數(shù)據(jù)得sinθ>sin60°>eq\f(1,n) ②即θ大于全反射臨界角,因此光線在E點(diǎn)發(fā)生全反射。(2)設(shè)光線在AC邊上的F點(diǎn)射出棱鏡,光線的入射角為i′,折射角為r′,由幾何關(guān)系、反射定律及折射定律,有i=30° ③i′=90°-θ ④sini=nsinr ⑤nsini′=sinr′ ⑥聯(lián)立①③④⑤⑥式并代入題給數(shù)據(jù),得sinr′=eq\f(2\r(2)-\r(3),4) ⑦由幾何關(guān)系,r′即AC邊射出的光線與最初的入射光線的夾角。答案:(1)見(jiàn)解析(2)eq\f(2\r(2)-\r(3),4)【變式6-2】如圖所示,三角形ABC為某透明介質(zhì)的橫截面,O為BC邊的中點(diǎn),位于截面所在平面內(nèi)的一束光線自O(shè)以角i入射,第一次到達(dá)AB邊恰好發(fā)生全反射.已知θ=15°,BC邊長(zhǎng)為2L,該介質(zhì)的折射率為eq\r(2),求:(ⅰ)入射角i;(ⅱ)從入射到發(fā)生第一次全反射所用的時(shí)間(設(shè)光在真空中的速度為c,可能用到:sin75°=eq\f(\r(6)+\r(2),4)或tan15°=2-eq\r(3)).答案(ⅰ)45°(ⅱ)eq\f(\r(6)+\r(2)L,2c)解析(ⅰ)如圖所示,根據(jù)全反射規(guī)律可知,光線在AB面上P點(diǎn)的入射角等于臨界角C,由折射定律得sinC=eq\f(1,n)①代入數(shù)據(jù)得C=45°②設(shè)光線在BC面上的折射角為r,由幾何關(guān)系得r=30°③由折射定律得n=eq\f(sini,sinr)④聯(lián)立③④式,代入數(shù)據(jù)得i=45°⑤(ⅱ)在△OPB中,根據(jù)正弦定理得eq\f(\x\to(OP),sin75°)=eq\f(L,sin45°)⑥設(shè)所用時(shí)間為t,光線在介質(zhì)中的速度為v,得eq\x\to(OP)=vt⑦v=eq\f(c,n)⑧聯(lián)立⑥⑦⑧式,代入數(shù)據(jù)得t=eq\f(\r(6)+\r(2),2c)L【變式6-3】(多選)截面為等腰直角三角形的三棱鏡如圖甲所示,DE為嵌在三棱鏡內(nèi)部緊貼BB′C′C面的線狀單色可見(jiàn)光光源,DE與三棱鏡的ABC面垂直,D位于線段BC的中點(diǎn),圖乙為圖甲中ABC面的正視圖,三棱鏡對(duì)該單色光的折射率為eq\r(2),只考慮由DE直接射向側(cè)面AA′C′C的光線.下列說(shuō)法正確的是()A.光從AA′C′C面出射的區(qū)域占該側(cè)面總面積的eq\f(1,2)B.光從AA′C′C面出射的區(qū)域占該側(cè)面總面積的eq\f(2,3)C.若DE發(fā)出的單色光頻率變小,AA′C′C面有光出射的區(qū)域面積將增大D.若DE發(fā)出的單色光頻率變小,AA′C′C面有光出射的區(qū)域面積將減小答案AC解析根據(jù)sinC=eq\f(1,n),得光線在AC面上發(fā)生全反射的臨界角C=45°,如圖所示.從AC面上射出的光線為射到FC區(qū)域的光線,由幾何關(guān)系得FC=eq\f(1,2)AC,即有光線射出的區(qū)域占該側(cè)面總面積的一半,故A正確,B錯(cuò)誤;當(dāng)單色光的頻率變小時(shí),折射率n變小,根據(jù)sinC=eq\f(1,n),知臨界角C變大,圖中的F點(diǎn)向A點(diǎn)移動(dòng),故有光射出的區(qū)域的面積變大,故C正確,D錯(cuò)誤.【題型7全反射與色散】【例7】一束白光從頂角為θ的一邊以較大的入射角i射入并通過(guò)三棱鏡后,在屏P上可得到彩色光帶,如圖所示,在入射角i逐漸減小到零的過(guò)程中,假如屏上的彩色光帶先后全部消失,則()A.紅光最先消失,紫光最后消失B.紫光最先消失,紅光最后消失C.紫光最先消失,黃光最后消失D.紅光最先消失,黃光最后消失答案B解析白光從AB面射入玻璃后,由于紫光偏折大,從而到達(dá)另一側(cè)面AC時(shí)的入射角較大,且因紫光折射率大,sinC=eq\f(1,n),因而其全反射的臨界角最小,故隨著入射角i的減小,進(jìn)入玻璃后的各色光中紫光首先發(fā)生全反射不從AC面射出,后依次是藍(lán)、青、綠、黃、橙、紅,逐漸發(fā)生全反射而不從AC面射出.【變式7-1】(多選)一束白光從水中射入真空的折射光線如圖所示,若保持入射點(diǎn)O不變而逐漸增大入射角,下述說(shuō)法中正確的是()A.若紅光射到P點(diǎn),則紫光在P點(diǎn)上方B.若紅光射到P點(diǎn),則紫光在P點(diǎn)下方C.紫光先發(fā)生全反射,而紅光后發(fā)生全反射D.當(dāng)紅光和紫光都發(fā)生全反射時(shí),它們的反射光線射到水底時(shí)是在同一點(diǎn)答案BCD解析同一種介質(zhì)對(duì)紫光的折射率大,而對(duì)紅光的折射率小,水中入射角相同時(shí),紫光的折射角大,所以紫光在P點(diǎn)下方,A錯(cuò)誤,B正確;同理,紫光的臨界角小,紫光先達(dá)到臨界角發(fā)生全反射,紅光后達(dá)到臨界角發(fā)生全反射,C正確;根據(jù)光的反射定律,紅光和紫光都發(fā)生全反射時(shí),反射光線的傳播方向一致,所以它們的反射光線射到水底時(shí)是在同一點(diǎn),D正確.【變式7-2】一束復(fù)色光由空氣斜射向平行玻璃磚,入射角為θ,從另一側(cè)射出時(shí)分成a、b兩束單色光,如圖所示,下列說(shuō)法正確的是()A.在該玻璃中a的傳播速度比b小B.b比a更容易發(fā)生衍射C.增大θ(θ<90°),a、b可能不會(huì)從另一側(cè)射出D.a從該玻璃射向空氣時(shí)的臨界角比b的大答案D【變式7-3】(多選)如圖,一束光沿半徑方向射向一塊半圓柱形玻璃磚,在玻璃磚底面上的入射角為θ,經(jīng)折射后射出a、b兩束光線.則________.A.在玻璃中,a光的傳播速度小于b光的傳播速度B.在真空中,a光的波長(zhǎng)小于b光的波長(zhǎng)C.玻璃磚對(duì)a光的折射率小于對(duì)b光的折射率D.若改變光束的入射方向使θ角逐漸變大,則折射光線a首先消失答案ABD解析由題圖可知,a光的折射角大于b光的折射角,根據(jù)折射定律可以判斷出玻璃磚對(duì)a光的折射率大于對(duì)b光的折射率,故C錯(cuò)誤;根據(jù)n=eq\f(c,v)可知,在玻璃中,a光的傳播速度小于b光的傳播速度,故A正確;a光的頻率大于b光的頻率,根據(jù)λ=eq\f(c,ν)可知,在真空中a光的波長(zhǎng)小于b光的波長(zhǎng),故B正確;若改變光束的入射方向使θ角逐漸變大,因?yàn)閍光的折射率大,則折射光線a首先消失,故D正確.專題4.2全反射【人教版】【題型1全反射】 【題型2生活中的全反射問(wèn)題】 【題型3高科技中的全反射】 【題型4半圓形玻璃磚與全反射】 【題型5求范圍、最值問(wèn)題】 【題型6三棱鏡與全反射】 【題型7全反射與色散】 【題型1全反射】【例1】?jī)墒煌l率的單色光a、b從空氣射入水中,發(fā)生了如圖所示的折射現(xiàn)象(α>β)。下列結(jié)論中正確的是()A.光束b的頻率比光束a低B.在水中的傳播速度,光束a比光束b小C.水對(duì)光束a的折射率比水對(duì)光束b的折射率小D.若光束從水中射向空氣,則光束b的臨界角比光束a的臨界角大解析:選C根據(jù)圖示和折射定律n=可知,b光的折射率較大,則b的頻率較大,故A錯(cuò)誤,C正確;由n=可知,b光的折射率較大,在同種介質(zhì)中傳播速度較小,即在水中的傳播速度,光束a比光束b大,故B錯(cuò)誤;由臨界角公式sinC=分析得到,b光的折射率較大,對(duì)同種介質(zhì)的臨界角較小,故D錯(cuò)誤?!咀兪?-1】如圖是某種玻璃材料制成的空心圓柱體的截面圖,玻璃圓柱體的半徑為2R,空心部分是半徑為R的圓,兩圓同心。一束單色光(平行于截面)從圓柱體外表面上的A點(diǎn)以入射角i射入玻璃材料中,光束經(jīng)折射后恰好與內(nèi)圓面相切于B點(diǎn)。已知該玻璃材料對(duì)此單色光的折射率為。(1)求入射角i;(2)欲使該光束從A點(diǎn)入射后,恰好在內(nèi)圓面上發(fā)生全反射,則入射角i′是多少?解析:(1)由題意,設(shè)折射角為r,由幾何關(guān)系得:sinr===0.5,根據(jù)折射定律:n=解得i=45°。(2)設(shè)在A點(diǎn)的入射角為i′時(shí),光束經(jīng)折射后到達(dá)內(nèi)圓面上C點(diǎn),并在C點(diǎn)恰發(fā)生全反射,則光束在內(nèi)圓面上的入射角∠ACD恰等于臨界角θ,如圖所示,又sinθ==,解得∠ACD=θ=45°根據(jù)正弦定理得:=解得sin∠CAO=根據(jù)折射定律:n=解得i′=30°。答案:(1)45°(2)30°【變式1-2】(2021·海南高考)如圖,長(zhǎng)方體玻璃磚的橫截面為矩形MNPQ,MN=2NP,其折射率為。一束單色光在紙面內(nèi)以α=45°的入射角從空氣射向MQ邊的中點(diǎn)O,則該束單色光()A.在MQ邊的折射角為60°B.在MN邊的入射角為45°C.不能從MN邊射出D.不能從NP邊射出解析:選C光線從O點(diǎn)入射,設(shè)折射角為β,由折射定律得sinα=nsinβ,解得β=30°,即在MQ邊的折射角為30°,故A錯(cuò)誤;設(shè)邊長(zhǎng)NP=l,則MN=2l,作出折射后的光路圖如圖所示,由幾何關(guān)系可知光在MN邊的入射角為60°,故B錯(cuò)誤;光從光密介質(zhì)射入光疏介質(zhì)發(fā)生全反射的臨界角設(shè)為θ,有sinθ==,即θ=45°,而MN邊的入射角為60°>45°,故光在MN邊發(fā)生全反射,即不能從MN邊射出,故C正確;根據(jù)幾何關(guān)系可知光在A點(diǎn)發(fā)生全反射后到達(dá)NP邊的B點(diǎn),根據(jù)光的折射的可逆性可知,光從NP邊的B點(diǎn)折射后的折射角為45°,故D錯(cuò)誤?!咀兪?-3】打磨某剖面如圖所示的寶石時(shí),必須將OP、OQ邊與軸線的夾角θ切磨在θ1<θ<θ2的范圍內(nèi),才能使從MN邊垂直入射的光線,在OP邊和OQ邊都發(fā)生全反射(僅考慮如圖所示的光線第一次射到OP邊并反射到OQ邊后射向MN邊的情況),則下列判斷正確的是()A.若θ>θ2,光線一定在OP邊發(fā)生全反射B.若θ>θ2,光線會(huì)從OQ邊射出C.若θ<θ1,光線會(huì)從OP邊射出D.若θ<θ1,光線會(huì)在OP邊發(fā)生全反射答案D解析全反射的條件:sinC=,90°-θ>C,θ越小越容易發(fā)生全反射,選項(xiàng)A、C錯(cuò)誤,選項(xiàng)D正確.θ較大時(shí),已從OP邊射出,選項(xiàng)B錯(cuò)誤.【題型2生活中的全反射問(wèn)題】【例2】單鏡頭反光相機(jī)簡(jiǎn)稱單反相機(jī),它用一塊放置在鏡頭與感光部件之間的透明平面鏡把來(lái)自鏡頭的圖象投射到對(duì)焦屏上.對(duì)焦屏上的圖象通過(guò)五棱鏡的反射進(jìn)入人眼中.如圖為單反照相機(jī)取景器的示意圖,ABCDE為五棱鏡的一個(gè)截面,AB⊥BC,光線垂直AB射入,分別在CD和EA上發(fā)生全反射,且兩次反射的入射角相等,最后光線垂直BC射出,則該五棱鏡折射率的最小值為()A.B.C.D.答案A解析設(shè)射入CD面上的入射角為θ,因?yàn)樵贑D和EA上發(fā)生全反射,且兩次反射的入射角相等,光路圖如圖,根據(jù)幾何知識(shí)有4θ=90°解得θ=22.5°當(dāng)光剛好在CD和AE面上發(fā)生全反射時(shí)折射率最小,則有臨界角C=θ,則有sinθ=解得最小折射率為n=,A正確.【變式2-1】如圖,一小孩在河水清澈的河面上以1m/s的速度游泳,t=0時(shí)刻他看到自己正下方的河底有一小石塊,t=3s時(shí)他恰好看不到小石塊了,河水的折射率n=,下列說(shuō)法正確的是()A.3s后,小孩會(huì)再次看到河底的石塊B.前3s內(nèi),小孩看到的石塊越來(lái)越明亮C.這條河的深度為mD.t=0時(shí)小孩看到的石塊深度為m解析:選Ct=3s時(shí)他恰好看不到小石塊了,說(shuō)明在此位置從小石塊射到水面的光發(fā)生了全反射,則3s后的位置從小石塊射到水面的光仍發(fā)生全反射,A錯(cuò)誤;前3s內(nèi),從小石塊上射向水面的光折射光線逐漸減弱,反射光逐漸增強(qiáng),可知小孩看到的石塊越來(lái)越暗,B錯(cuò)誤;由于sinC==,則tanC=,可知水深h==m=m,C正確;t=0時(shí)小孩看到的石塊深度為h′==m,D錯(cuò)誤。【變式2-2】很多公園的水池底都裝有彩燈,當(dāng)一細(xì)束由紅、藍(lán)兩色組成的燈光從水中斜射向空氣時(shí),關(guān)于光在水面可能發(fā)生的反射和折射現(xiàn)象,下列光路圖中正確的是()答案C解析紅光、藍(lán)光都要發(fā)生反射,紅光的折射率較小,根據(jù)sinC=可知紅光發(fā)生全反射的臨界角比藍(lán)光大,所以藍(lán)光發(fā)生全反射時(shí),紅光不一定發(fā)生,故C正確.【變式2-3】一厚度為h的大平板玻璃水平放置,其下表面貼有一半徑為r的圓形發(fā)光面.在玻璃板上表面放置一半徑為R的圓紙片,圓紙片與圓形發(fā)光面的中心在同一豎直線上.已知圓紙片恰好能完全遮擋住從圓形發(fā)光面發(fā)出的光線(不考慮反射),求平板玻璃的折射率.答案見(jiàn)解析解析如圖所示,考慮從圓形發(fā)光面邊緣的A點(diǎn)發(fā)出的一條光線,假設(shè)它斜射到玻璃上表面的A′點(diǎn)發(fā)生折射,根據(jù)折射定律有nsinθ=sinα式中,n是玻璃的折射率,θ是入射角,α是折射角.現(xiàn)假設(shè)A′恰好在紙片邊緣,由題意,在A′點(diǎn)剛好發(fā)生全反射,故sinθ=sinC=設(shè)AA′線段在玻璃上表面的投影長(zhǎng)為L(zhǎng),由幾何關(guān)系有sinθ=由題意,紙片的半徑應(yīng)為R=L+r聯(lián)立以上各式得n=【題型3高科技中的全反射】【例3】導(dǎo)光管采光系統(tǒng)是一套采集天然光,并經(jīng)管道傳輸?shù)绞覂?nèi)的采光系統(tǒng),如圖為過(guò)裝置中心軸線的截面。上面部分是收集陽(yáng)光的半徑為R的某種均勻透明材料的半球形采光球,O為球心,下面部分是內(nèi)側(cè)涂有反光涂層的導(dǎo)光管,MN為兩部分的分界面,M、N為球面兩點(diǎn)。若一束平行MN且與MN相距h=R的細(xì)光束從空氣入射到采光球表面時(shí),經(jīng)折射綠光恰好照射到N點(diǎn)。則()A.綠光在采光球中的傳播速度為cB.紅光一定能從N點(diǎn)上方射出C.紫光有可能直接折射經(jīng)過(guò)O點(diǎn)D.要使光束在導(dǎo)光管中發(fā)生全反射,涂層折射率應(yīng)小于管壁折射率解析:選B如圖所示,根據(jù)幾何關(guān)系sinα==,α=2θ,折射率n==,綠光在采光球中的傳播速度為v==c,故A錯(cuò)誤;紅光折射率小,折射角大,則紅光一定能從N點(diǎn)上方射出,故B正確;紫光不可能直接折射經(jīng)過(guò)O點(diǎn),如果直接經(jīng)過(guò)O點(diǎn),折射角為0°,故C錯(cuò)誤;光由光密介質(zhì)到光疏介質(zhì)可能發(fā)生全反射,則涂層折射率應(yīng)大于管壁折射率,故D錯(cuò)誤?!咀兪?-1】(2021·遼寧高考)一束復(fù)色光從空氣射入光導(dǎo)纖維后分成a、b兩束單色光,光路如圖所示,比較內(nèi)芯中的a、b兩束光,a光的()A.頻率小,發(fā)生全反射的臨界角小B.頻率大,發(fā)生全反射的臨界角小C.頻率小,發(fā)生全反射的臨界角大D.頻率大,發(fā)生全反射的臨界角大解析:選C由光路圖可知a光的偏折程度沒(méi)有b光的大,因此a光的折射率小,頻率小,由sinC=可知折射率越小發(fā)生全反射的臨界角越大,故C正確?!咀兪?-2】如圖甲所示,為研究一半圓柱形透明新材料的光學(xué)性質(zhì),用激光由真空沿半圓柱體的徑向射入,入射光線與法線成θ角,由光學(xué)傳感器CD可以探測(cè)反射光的強(qiáng)度.實(shí)驗(yàn)獲得從AB面反射回來(lái)的反射光的強(qiáng)度隨θ角變化的情況如圖乙所示.光在真空中的傳播速度為c,則該激光在這種透明新材料中()A.折射率為B.傳播速度為cC.θ=0°時(shí),反射光強(qiáng)度為0D.反射光的強(qiáng)度隨θ角的增大而增大答案B解析據(jù)題圖乙知θ=60°時(shí)激光發(fā)生全反射,由折射定律得n==,故A錯(cuò)誤;由速度公式得v==c,故B正確;θ=0°時(shí)大量的激光從O點(diǎn)射出,少量激光發(fā)生反射,故C錯(cuò)誤;根據(jù)題圖乙可知當(dāng)θ=60°時(shí)激光發(fā)生全反射,此后θ角增大,但反射光的強(qiáng)度不變,故D錯(cuò)誤.【變式3-3】如圖所示,光導(dǎo)纖維由內(nèi)芯和包層兩個(gè)同心圓柱體組成,其中心部分是內(nèi)芯,內(nèi)芯以外的部分為包層,光從一端進(jìn)入,從另一端射出,下列說(shuō)法正確的是()A.內(nèi)芯的折射率大于包層的折射率B.內(nèi)芯的折射率小于包層的折射率C.不同頻率的可見(jiàn)光從同一根光導(dǎo)纖維的一端傳輸?shù)搅硪欢怂玫臅r(shí)間相同D.若紫光以如圖所示角度入射時(shí),恰能在內(nèi)芯和包層分界面上發(fā)生全反射,則改用紅光以同樣角度入射時(shí),也能在內(nèi)芯和包層分界面上發(fā)生全反射答案A解析光導(dǎo)纖維是依據(jù)全反射原理工作的,內(nèi)芯的折射率大于包層的折射率,選項(xiàng)A正確,B錯(cuò)誤;不同頻率的可見(jiàn)光在同一介質(zhì)中的傳播速度不同,從同一根光導(dǎo)纖維的一端傳輸?shù)搅硪欢怂玫臅r(shí)間一般不相同,選項(xiàng)C錯(cuò)誤;若將紫光改用紅光也以同樣角度入射時(shí),由于紅光臨界角大于紫光,所以不能在內(nèi)芯和包層分界面上發(fā)生全反射,選項(xiàng)D錯(cuò)誤.【題型4半圓形玻璃磚與全反射】【例4】(2021·河北高考)將兩塊半徑均為R、完全相同的透明半圓柱體A、B正對(duì)放置,圓心上下錯(cuò)開(kāi)一定距離,如圖所示。用一束單色光沿半徑照射半圓柱體A,設(shè)圓心處入射角為θ。當(dāng)θ=60°時(shí),A右側(cè)恰好無(wú)光線射出;當(dāng)θ=30°時(shí),有光線沿B的半徑射出,射出位置與A的圓心相比下移h。不考慮多次反射。求:(1)半圓柱體對(duì)該單色光的折射率;(2)兩個(gè)半圓柱體之間的距離d。解析:(1)光從半圓柱體A射入,滿足光從光密介質(zhì)到光疏介質(zhì),當(dāng)θ=60°時(shí)發(fā)生全反射,有sinθ=解得n=。(2)當(dāng)入射角θ=30°,經(jīng)兩次折射沿半圓柱體B的半徑射出,設(shè)折射角為r,光路如圖所示由折射定律有n=由幾何關(guān)系有tanr=聯(lián)立解得d=。答案:(1)(2)【變式4-1】(2021·江蘇高考)某種材料制成的半圓形透明磚平放在方格紙上,將激光束垂直于AC面射入,可以看到光束從圓弧面ABC出射,沿AC方向緩慢平移該磚,在如圖所示位置時(shí),出射光束恰好消失,該材料的折射率為()A.1.2B.1.4C.1.6 D.1.8解析:選A畫(huà)出激光束從玻璃磚射出時(shí)恰好發(fā)生全反射的入射角,如圖所示。由全反射的條件得sinθ=,由幾何關(guān)系知sinθ=,聯(lián)立解得n=1.2,故A正確,B、C、D錯(cuò)誤?!咀兪?-2】某同學(xué)用大頭針、三角板、量角器等器材測(cè)半圓形玻璃磚的折射率。開(kāi)始玻璃磚的位置如圖中實(shí)線所示,使大頭針P1、P2與圓心O在同一直線上,該直線垂直于玻璃磚的直徑邊,然后使玻璃磚繞圓心O緩慢轉(zhuǎn)動(dòng),同時(shí)在玻璃磚的直徑邊一側(cè)觀察P1、P2的像,且P2的像擋住P1的像。如此觀察,當(dāng)玻璃磚轉(zhuǎn)到圖中虛線位置時(shí),上述現(xiàn)象恰好消失。此時(shí)只需測(cè)量出____________________,即可計(jì)算出玻璃磚的折射率。請(qǐng)用你測(cè)量的量表示出折射率n=________。解析:玻璃磚轉(zhuǎn)動(dòng)時(shí),射在其直徑所在平面內(nèi)的光線的入射角增大,當(dāng)增大到等于臨界角C時(shí),發(fā)生全反射現(xiàn)象。因sinC=,可見(jiàn)只要測(cè)出臨界角即可求得折射率n,而C和玻璃磚直徑繞O點(diǎn)轉(zhuǎn)過(guò)的角度θ相等,因此只要測(cè)出玻璃磚直徑邊繞O點(diǎn)轉(zhuǎn)過(guò)的角度θ即可。答案:玻璃磚直徑邊繞O點(diǎn)轉(zhuǎn)過(guò)的角度θ【變式4-3】如圖,一半徑為R的玻璃半球,O點(diǎn)是半球的球心,虛線OO′表示光軸(過(guò)球心O與半球底面垂直的直線).已知玻璃的折射率為1.5.現(xiàn)有一束平行光垂直入射到半球的底面上,有些光線能從球面射出(不考慮被半球的內(nèi)表面反射后的光線).求:(1)從球面射出的光線對(duì)應(yīng)的入射光線到光軸距離的最大值;(2)距光軸的入射光線經(jīng)球面折射后與光軸的交點(diǎn)到O點(diǎn)的距離.答案(1)R(2)2.74R解析(1)如圖甲,從底面上A處射入的光線,在球面上發(fā)生折射時(shí)的入射角為i,當(dāng)i等于全反射臨界角ic時(shí),對(duì)應(yīng)入射光線到光軸的距離最大,設(shè)最大距離為l.i=ic①設(shè)n是玻璃的折射率,由全反射臨界角的定義有nsinic=1②由幾何關(guān)系有sinic=③聯(lián)立①②③式并利用題給條件,得l=R④(2)如圖乙,設(shè)與光軸相距的光線在球面B點(diǎn)發(fā)生折射時(shí)的入射角和折射角分別為i1和r1,由折射定律有nsini1=sinr1⑤設(shè)折射光線與光軸的交點(diǎn)為C,在△OBC中,由正弦定理有=⑥由幾何關(guān)系有∠C=r1-i1⑦sini1=⑧聯(lián)立⑤⑥⑦⑧式及題給條件得OC=R≈2.74R.【題型5求范圍、最值問(wèn)題】【例5】一半徑為R的半圓柱形玻璃磚,橫截面如圖所示.已知玻璃的全反射臨界角γ(γ<).與玻璃磚的底平面成(-γ)角度、且與玻璃磚橫截面平行的平行光射到玻璃磚的半圓柱面上.經(jīng)柱面折射后,有部分光(包括與柱面相切的入射光)能直接從玻璃磚底面射出.若忽略經(jīng)半圓柱內(nèi)表面反射后射出的光.求底面透光部分的寬度.答案見(jiàn)解析解析光路圖如圖所示,沿半徑方向射入玻璃磚的光線,即光線①射到MN上時(shí),根據(jù)幾何知識(shí),入射角恰好等于臨界角,即恰好在圓心O處發(fā)生全反射,光線①左側(cè)的光線,經(jīng)球面折射后,射到MN上的角一定大于臨界角,即在MN上發(fā)生全反射,不能射出,光線①右側(cè)的光線射到MN上的角小于臨界角,可以射出,光線③與球面相切,入射角θ1=90°,折射角即為γ,從MN上垂直射出.根據(jù)幾何知識(shí),底面透光部分的寬度OE=Rsinγ.【變式5-1】(多選)如圖所示,空氣中有一折射率為的玻璃柱體,其橫截面是圓心角為90°、半徑為R的扇形,一束光平行于橫截面,以入射角θ照射到OA上,OB不透光。只考慮首次入射到圓弧上的光()A.若θ=45°,則AB面上最大的入射角大于45°B.若θ=45°,則AB面上最大的入射角為45°C.若θ=45°,則AB面上有光透出部分的弧長(zhǎng)為πRD.若θ增大,則AB面上有光透出部分的弧長(zhǎng)變長(zhǎng)解析:選AC若θ=45°,根據(jù)折射定律有=,可得光進(jìn)入玻璃后光線與OB的夾角為30°,過(guò)O點(diǎn)的光線垂直入射到AB界面上的點(diǎn)C,如圖所示,C到B之間沒(méi)有光線射出;越接近A的光線入射到AB界面上時(shí)的入射角越大,可知AB面上最大的入射角大于45°,故A正確,B錯(cuò)誤。若θ=45°,根據(jù)sinC=,得臨界角為45°;如果AB界面上的臨界點(diǎn)為D,此光線在AO界面上點(diǎn)E入射,在三角形ODE中可求得OD與OA的夾角為180°-45°-120°=15°,A到D之間沒(méi)有光線射出,由此可得有光線射出的圓弧對(duì)應(yīng)圓心角為90°-(30°+15°)=45°,有光透出部分的弧長(zhǎng)為l=·2πR=πR,故C正確。增大θ,則折射角也增大,根據(jù)幾何關(guān)系,設(shè)折射角為α,則有光線射出的部分對(duì)應(yīng)的圓心角為90°-α-[180°-45°-(90°+α)]=45°,可知對(duì)應(yīng)的弧長(zhǎng)不變,故D錯(cuò)誤。【變式5-2】如圖所示,截面為半圓形的玻璃磚的半徑為R,一束單色平行光向右垂直直面射向玻璃磚,在玻璃磚右側(cè)可看到圓弧面上有三分之二的區(qū)域被照亮.已知光在真空中的速度為c,求:(1)該玻璃磚對(duì)此單色光的折射率;(2)自不同點(diǎn)入射的光在玻璃磚中的傳播時(shí)間不同,計(jì)算得出最短傳播時(shí)間(不考慮光在玻璃磚內(nèi)的多次反射).答案(1)(2)解析(1)由幾何關(guān)系可得,此單色光在玻璃磚中全反射的臨界角C=××180°=60°又sinC=得該玻璃磚對(duì)此單色光的折射率n=(2)光在玻璃磚中的最短傳播距離x=Rcos60°又n=x=vt得最短傳播時(shí)間t=【變式5-3】(多選)固定的半圓形玻璃磚的橫截面如圖,O點(diǎn)為圓心,OO′為直徑MN的垂線.足夠大的光屏PQ緊靠玻璃磚右側(cè)且垂直于MN.由A、B兩種單色光組成的一束光沿半徑方向射向O點(diǎn),入射光線與OO′夾角θ較小時(shí),光屏NQ區(qū)域出現(xiàn)兩個(gè)光斑,逐漸增大θ角,當(dāng)θ=α?xí)r,光屏NQ區(qū)域A光的光斑消失,繼續(xù)增大θ角,當(dāng)θ=β時(shí),光屏NQ區(qū)域B光的光斑消失,則()A.玻璃磚對(duì)A光的折射率比對(duì)B光的大B.A光在玻璃磚中傳播速度比B光的大C.α<θ<β時(shí),光屏上只有1個(gè)光斑D.β<θ<時(shí),光屏上只有1個(gè)光斑答案AD解析當(dāng)入射角θ逐漸增大時(shí),A光的光斑先消失,說(shuō)明A光的折射角大于B光的折射角,即玻璃對(duì)A光的折射率大于對(duì)B光的折射率(nA>nB),所以fA>fB,vA<vB,選項(xiàng)A正確,B錯(cuò)誤.當(dāng)A光、B光都發(fā)生全反射時(shí),光屏上只有1個(gè)光斑,選項(xiàng)C錯(cuò)誤,D正確.【題型6三棱鏡與全反射】【例6】(2021·山東等級(jí)考)超強(qiáng)超短光脈沖產(chǎn)生方法曾獲諾貝爾物理學(xué)獎(jiǎng),其中用到的一種脈沖激光展寬器截面如圖所示。在空氣中對(duì)稱放置四個(gè)相同的直角三棱鏡,頂角為θ。一細(xì)束脈沖激光垂直第一個(gè)棱鏡左側(cè)面入射,經(jīng)過(guò)前兩個(gè)棱鏡后分為平行的光束,再經(jīng)過(guò)后兩個(gè)棱鏡重新合成為一束,此時(shí)不同頻率的光前后分開(kāi),完成脈沖展寬。已知相鄰兩棱鏡斜面間的距離d=100.0mm,脈沖激光中包含兩種頻率的光,它們?cè)诶忡R中的折射率分別為n1=和n2=。取sin37°=,cos37°=,=1.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論