版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東歷城二中2025屆高三第四次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知公差不為0的等差數(shù)列的前項(xiàng)的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.402.的展開式中的系數(shù)為()A. B. C. D.3.點(diǎn)是單位圓上不同的三點(diǎn),線段與線段交于圓內(nèi)一點(diǎn)M,若,則的最小值為()A. B. C. D.4.若復(fù)數(shù)z滿足,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如圖,在棱長為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點(diǎn),M為棱AD的中點(diǎn),設(shè)P,Q為底面ABCD內(nèi)的兩個(gè)動(dòng)點(diǎn),滿足平面EFG,,則的最小值為()A. B. C. D.6.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.7.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.8.設(shè)不等式組,表示的平面區(qū)域?yàn)?,在區(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿足不等式的概率為A. B.C. D.9.若雙曲線:的一條漸近線方程為,則()A. B. C. D.10.()A. B. C. D.11.下列判斷錯(cuò)誤的是()A.若隨機(jī)變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機(jī)變量服從二項(xiàng)分布:,則D.是的充分不必要條件12.在中,,,,若,則實(shí)數(shù)()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.實(shí)數(shù),滿足,如果目標(biāo)函數(shù)的最小值為,則的最小值為_______.14.在正方體中,已知點(diǎn)在直線上運(yùn)動(dòng),則下列四個(gè)命題中:①三棱錐的體積不變;②;③當(dāng)為中點(diǎn)時(shí),二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)15.若函數(shù),則的值為______.16.如圖是一個(gè)算法流程圖,若輸出的實(shí)數(shù)的值為,則輸入的實(shí)數(shù)的值為______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).點(diǎn)在曲線上,點(diǎn)滿足.(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求動(dòng)點(diǎn)的軌跡的極坐標(biāo)方程;(2)點(diǎn),分別是曲線上第一象限,第二象限上兩點(diǎn),且滿足,求的值.18.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.19.(12分)已知橢圓,過的直線與橢圓相交于兩點(diǎn),且與軸相交于點(diǎn).(1)若,求直線的方程;(2)設(shè)關(guān)于軸的對稱點(diǎn)為,證明:直線過軸上的定點(diǎn).20.(12分)設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.22.(10分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
,將代入,求得公差d,再利用等差數(shù)列的前n項(xiàng)和公式計(jì)算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的前n項(xiàng)和公式,考查等差數(shù)列基本量的計(jì)算,是一道容易題.2、C【解析】由題意,根據(jù)二項(xiàng)式定理展開式的通項(xiàng)公式,得展開式的通項(xiàng)為,則展開式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識與技能,屬于中低檔題,也是??贾R點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問題可得解.3、D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當(dāng)且僅當(dāng)時(shí)等號成立),,的最小值為,故選:D.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.4、A【解析】
化簡復(fù)數(shù),求得,得到復(fù)數(shù)在復(fù)平面對應(yīng)點(diǎn)的坐標(biāo),即可求解.【詳解】由題意,復(fù)數(shù)z滿足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點(diǎn)的坐標(biāo)為位于第一象限故選:A.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何表示方法,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,結(jié)合復(fù)數(shù)的表示方法求解是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.5、C【解析】
把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【詳解】如圖,分別取的中點(diǎn),連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關(guān)于直線的對稱點(diǎn)為,,當(dāng)且僅當(dāng)共線時(shí)取等號,∴所求最小值為.故選:C.【點(diǎn)睛】本題考查空間距離的最小值問題,解題時(shí)作出正方體的完整截面求出點(diǎn)軌跡是第一個(gè)難點(diǎn),第二個(gè)難點(diǎn)是求出點(diǎn)軌跡,第三個(gè)難點(diǎn)是利用對稱性及圓的性質(zhì)求得最小值.6、C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對選項(xiàng)逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項(xiàng).【詳解】函數(shù)的定義域?yàn)?,在上為減函數(shù).A選項(xiàng),的定義域?yàn)?,在上為增函?shù),不符合.B選項(xiàng),的定義域?yàn)?,不符?C選項(xiàng),的定義域?yàn)?,在上為減函數(shù),符合.D選項(xiàng),的定義域?yàn)椋环?故選:C【點(diǎn)睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.7、A【解析】
設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.8、A【解析】
畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點(diǎn),在區(qū)域內(nèi)是一個(gè)以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項(xiàng).【點(diǎn)睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.9、A【解析】
根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點(diǎn)睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.10、A【解析】
分子分母同乘,即根據(jù)復(fù)數(shù)的除法法則求解即可.【詳解】解:,故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.11、D【解析】
根據(jù)正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識,依次對四個(gè)選項(xiàng)加以分析判斷,進(jìn)而可求解.【詳解】對于選項(xiàng),若隨機(jī)變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項(xiàng)正確,不符合題意;對于選項(xiàng),已知直線平面,直線平面,則當(dāng)時(shí)一定有,充分性成立,而當(dāng)時(shí),不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項(xiàng)正確,不符合題意;對于選項(xiàng),若隨機(jī)變量服從二項(xiàng)分布:,則,故選項(xiàng)正確,不符合題意;對于選項(xiàng),,僅當(dāng)時(shí)有,當(dāng)時(shí),不成立,故充分性不成立;若,僅當(dāng)時(shí)有,當(dāng)時(shí),不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項(xiàng)不正確,符合題意.故選:D【點(diǎn)睛】本題考查正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識,考查理解辨析能力與運(yùn)算求解能力,屬于基礎(chǔ)題.12、D【解析】
將、用、表示,再代入中計(jì)算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點(diǎn)睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的最小值為,確定出的值,進(jìn)而確定出C點(diǎn)坐標(biāo),結(jié)合目標(biāo)函數(shù)幾何意義,從而求得結(jié)果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內(nèi),由得可知,直線的截距最大時(shí),取得最小值,此時(shí)直線為,作出直線,交于A點(diǎn),由圖象可知,目標(biāo)函數(shù)在該點(diǎn)取得最小值,所以直線也過A點(diǎn),由,得,代入,得,所以點(diǎn)C的坐標(biāo)為.等價(jià)于點(diǎn)與原點(diǎn)連線的斜率,所以當(dāng)點(diǎn)為點(diǎn)C時(shí),取得最小值,最小值為,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)線性規(guī)劃的問題,在解題的過程中,注意正確畫出約束條件對應(yīng)的可行域,根據(jù)最值求出參數(shù),結(jié)合分式型目標(biāo)函數(shù)的意義求得最優(yōu)解,屬于中檔題目.14、①②④【解析】
①∵,∴平面
,得出上任意一點(diǎn)到平面的距離相等,所以判斷命題①;②由已知得出點(diǎn)P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當(dāng)為中點(diǎn)時(shí),以點(diǎn)D為坐標(biāo)原點(diǎn),建立空間直角系,如下圖所示,運(yùn)用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點(diǎn),做點(diǎn)關(guān)于面對稱的點(diǎn),使得點(diǎn)在平面內(nèi),根據(jù)對稱性和兩點(diǎn)之間線段最短,可求得當(dāng)點(diǎn)在點(diǎn)時(shí),在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點(diǎn)到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運(yùn)動(dòng)時(shí),點(diǎn)P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當(dāng)為中點(diǎn)時(shí),以點(diǎn)D為坐標(biāo)原點(diǎn),建立空間直角系,如下圖所示,設(shè)正方體的棱長為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點(diǎn),做點(diǎn)關(guān)于面對稱的點(diǎn),使得點(diǎn)在平面內(nèi),則,所以,當(dāng)點(diǎn)在點(diǎn)時(shí),在一條直線上,取得最小值.因?yàn)檎襟w的棱長為2,所以設(shè)點(diǎn)的坐標(biāo)為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.【點(diǎn)睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運(yùn)用對稱的思想,兩點(diǎn)之間線段最短進(jìn)行求解,屬于難度題.15、【解析】
根據(jù)題意,由函數(shù)的解析式求出的值,進(jìn)而計(jì)算可得答案.【詳解】根據(jù)題意,函數(shù),則,則;故答案為:.【點(diǎn)睛】本題考查分段函數(shù)的性質(zhì)、對數(shù)運(yùn)算法則的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力.16、【解析】
根據(jù)程序框圖得到程序功能,結(jié)合分段函數(shù)進(jìn)行計(jì)算即可.【詳解】解:程序的功能是計(jì)算,若輸出的實(shí)數(shù)的值為,則當(dāng)時(shí),由得,當(dāng)時(shí),由,此時(shí)無解.故答案為:.【點(diǎn)睛】本題主要考查程序框圖的識別和判斷,理解程序功能是解決本題的關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)();(2)【解析】
(1)由已知,曲線的參數(shù)方程消去t后,要注意x的范圍,再利用普通方程與極坐標(biāo)方程的互化公式運(yùn)算即可;(2)設(shè),,由(1)可得,,相加即可得到證明.【詳解】(1),∵,∴,∴,由題可知:,:().(2)因?yàn)椋O(shè),,則,,.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,考查學(xué)生的計(jì)算能力,是一道容易題.18、(1);(2)1.【解析】
(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長的值.【詳解】(1)由題意,在中,因?yàn)?,由正弦定理,可得sinAsinB=sinBcosA,又因?yàn)?,可得sinB≠0,所以sinA=cosA,即:tanA=,因?yàn)锳∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長a+b+c=5+7=1.【點(diǎn)睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.19、(1)或;(2)見解析【解析】
(1)由已知條件利用點(diǎn)斜式設(shè)出直線的方程,則可表示出點(diǎn)的坐標(biāo),再由的關(guān)系表示出點(diǎn)的坐標(biāo),而點(diǎn)在橢圓上,將其坐標(biāo)代入橢圓方程中可求出直線的斜率;(2)設(shè)出兩點(diǎn)的坐標(biāo),則點(diǎn)的坐標(biāo)可以表示出,然后直線的方程與橢圓方程聯(lián)立成方程,消元后得到關(guān)于的一元二次方程,再利用根與系數(shù)的關(guān)系,再結(jié)合直線的方程,化簡可得結(jié)果.【詳解】(1)由條件可知直線的斜率存在,則可設(shè)直線的方程為,則,由,有,所以,由在橢圓上,則,解得,此時(shí)在橢圓內(nèi)部,所以滿足直線與橢圓相交,故所求直線方程為或.(也可聯(lián)立直線與橢圓方程,由驗(yàn)證)(2)設(shè),則,直線的方程為.由得,由,解得,,當(dāng)時(shí),,故直線恒過定點(diǎn).【點(diǎn)睛】此題考查的是直線與橢圓的位置關(guān)系中的過定點(diǎn)問題,計(jì)算過程較復(fù)雜,屬于難題.20、(1);(2).【解析】
(1)令可求得的值,令時(shí),由可得出,兩式相減可得的表達(dá)式,然后對是否滿足在時(shí)的表達(dá)式進(jìn)行檢驗(yàn),由此可得出數(shù)列的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,對分奇數(shù)和偶數(shù)兩種情況討論,利用奇偶分組求和法結(jié)合等差數(shù)列和等比數(shù)列的求和公式可求得結(jié)果.【詳解】(1),當(dāng)時(shí),;當(dāng)時(shí),由得,兩式相減得,.滿足.因此,數(shù)列的通項(xiàng)公式為;(2).①當(dāng)為奇數(shù)時(shí),;②當(dāng)為偶數(shù)時(shí),.綜上所述,.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)的求解,同時(shí)也考查了奇偶分組求和法,考查計(jì)算能力,屬于中等題.21、(Ⅰ)(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 核心企業(yè)盡職調(diào)查操作流程
- 人教版教學(xué)課件細(xì)胞核的結(jié)構(gòu)和功能
- 煙草制品健康風(fēng)險(xiǎn)評估-洞察分析
- 維修系統(tǒng)可持續(xù)性發(fā)展-洞察分析
- 消費(fèi)者醫(yī)療需求預(yù)測模型-洞察分析
- 醫(yī)務(wù)工作人員態(tài)度不好檢討書范文(15篇)
- 系統(tǒng)生物學(xué)統(tǒng)計(jì)分析-洞察分析
- 響應(yīng)式多語言菜單設(shè)計(jì)-洞察分析
- 新能源設(shè)備可靠性-洞察分析
- 虛擬現(xiàn)實(shí)在文物展示中的應(yīng)用-洞察分析
- DB36T 1476-2021 碳普惠平臺建設(shè)技術(shù)規(guī)范
- 喜報(bào)戰(zhàn)報(bào)捷報(bào)模板26
- 中華民族現(xiàn)代文明有哪些鮮明特質(zhì)建設(shè)中華民族現(xiàn)代文明的路徑是什么
- 《信息系統(tǒng)培訓(xùn)》課件
- 【MOOC】金羽飛揚(yáng)-世界冠軍的羽毛球課堂-哈爾濱工業(yè)大學(xué) 中國大學(xué)慕課MOOC答案
- 2022-2023學(xué)年上海市徐匯中學(xué)七年級(下)期中語文試卷
- 《光電傳感器的介紹》課件
- (面試)國家公務(wù)員考試試題及答案指導(dǎo)(2025年)
- 《生產(chǎn)環(huán)境與農(nóng)業(yè)投入品》課程考試及答案B卷
- 五年(2020-2024)高考語文真題專項(xiàng)分類匯編(7份打包)(含答案)
- 2024年中考化學(xué)重點(diǎn)復(fù)習(xí):工藝流程題
評論
0/150
提交評論