版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
蘇教版九年級數(shù)學(xué)下冊知識點總結(jié)第五章
二次函數(shù)一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如的函數(shù),叫做二次函數(shù)。這里需要強調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.
二次函數(shù)的結(jié)構(gòu)特征:⑴
等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵
是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.二、二次函數(shù)的基本形式1.
二次函數(shù)基本形式:的性質(zhì):三、二次函數(shù)圖象的平移
1.
平移步驟:方法一:⑴將拋物線解析式轉(zhuǎn)化成頂點式,確定其頂點坐標(biāo);⑵保持拋物線的形狀不變,將其頂點平移到處,具體平移方法如下:
2.
平移規(guī)律
在原有函數(shù)的基礎(chǔ)上“值正右移,負(fù)左移;值正上移,負(fù)下移”.概括成八個字“左加右減,上加下減”.
方法二:⑴沿軸平移:向上(下)平移個單位,變成(或)⑵沿軸平移:向左(右)平移個單位,變成(或)四、二次函數(shù)與的比較從解析式上看,與是兩種不同的表達(dá)形式,后者通過配方可以得到前者,即,其中.五、二次函數(shù)圖象的畫法五點繪圖法:利用配方法將二次函數(shù)化為頂點式,確定其開口方向、對稱軸及頂點坐標(biāo),然后在對稱軸兩側(cè),左右對稱地描點畫圖.一般我們選取的五點為:頂點、與軸的交點、以及關(guān)于對稱軸對稱的點、與軸的交點,(若與軸沒有交點,則取兩組關(guān)于對稱軸對稱的點).畫草圖時應(yīng)抓住以下幾點:開口方向,對稱軸,頂點,與軸的交點,與軸的交點.六、二次函數(shù)的性質(zhì)
1.
當(dāng)時,拋物線開口向上,對稱軸為,頂點坐標(biāo)為.當(dāng)時,隨的增大而減小;當(dāng)時,隨的增大而增大;當(dāng)時,有最小值.
2.
當(dāng)時,拋物線開口向下,對稱軸為,頂點坐標(biāo)為.當(dāng)時,隨的增大而增大;當(dāng)時,隨的增大而減小;當(dāng)時,有最大值.七、二次函數(shù)解析式的表示方法1.
一般式:(,,為常數(shù),);2.
頂點式:(,,為常數(shù),);3.
兩根式:(,,是拋物線與軸兩交點的橫坐標(biāo)).注意:任何二次函數(shù)的解析式都可以化成一般式或頂點式,但并非所有的二次函數(shù)都可以寫成交點式,只有拋物線與軸有交點,即時,拋物線的解析式才可以用交點式表示.二次函數(shù)解析式的這三種形式可以互化.八、二次函數(shù)的圖象與各項系數(shù)之間的關(guān)系
1.
二次項系數(shù)二次函數(shù)中,作為二次項系數(shù),顯然.
⑴當(dāng)時,拋物線開口向上,的值越大,開口越小,反之的值越小,開口越大;
⑵當(dāng)時,拋物線開口向下,的值越小,開口越小,反之的值越大,開口越大.總結(jié)起來,決定了拋物線開口的大小和方向,的正負(fù)決定開口方向,的大小決定開口的大?。?.
一次項系數(shù)
在二次項系數(shù)確定的前提下,決定了拋物線的對稱軸.
⑴在的前提下,當(dāng)時,,即拋物線的對稱軸在軸左側(cè);當(dāng)時,,即拋物線的對稱軸就是軸;當(dāng)時,,即拋物線對稱軸在軸的右側(cè).⑵在的前提下,結(jié)論剛好與上述相反,即當(dāng)時,,即拋物線的對稱軸在軸右側(cè);當(dāng)時,,即拋物線的對稱軸就是軸;當(dāng)時,,即拋物線對稱軸在軸的左側(cè).總結(jié)起來,在確定的前提下,決定了拋物線對稱軸的位置.的符號的判定:對稱軸在軸左邊則,在軸的右側(cè)則,概括的說就是“左同右異”總結(jié):
3.
常數(shù)項
⑴當(dāng)時,拋物線與軸的交點在軸上方,即拋物線與軸交點的縱坐標(biāo)為正;
⑵當(dāng)時,拋物線與軸的交點為坐標(biāo)原點,即拋物線與軸交點的縱坐標(biāo)為;
⑶當(dāng)時,拋物線與軸的交點在軸下方,即拋物線與軸交點的縱坐標(biāo)為負(fù).
總結(jié)起來,決定了拋物線與軸交點的位置.
總之,只要都確定,那么這條拋物線就是唯一確定的.二次函數(shù)解析式的確定:根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點,選擇適當(dāng)?shù)男问?,才能使解題簡便.一般來說,有如下幾種情況:1.
已知拋物線上三點的坐標(biāo),一般選用一般式;2.
已知拋物線頂點或?qū)ΨQ軸或最大(小)值,一般選用頂點式;3.
已知拋物線與軸的兩個交點的橫坐標(biāo),一般選用兩根式;4.
已知拋物線上縱坐標(biāo)相同的兩點,常選用頂點式.九、二次函數(shù)圖象的對稱
二次函數(shù)圖象的對稱一般有五種情況,可以用一般式或頂點式表達(dá)
1.
關(guān)于軸對稱
關(guān)于軸對稱后,得到的解析式是;關(guān)于軸對稱后,得到的解析式是;
2.
關(guān)于軸對稱
關(guān)于軸對稱后,得到的解析式是;關(guān)于軸對稱后,得到的解析式是;
3.
關(guān)于原點對稱
關(guān)于原點對稱后,得到的解析式是;
關(guān)于原點對稱后,得到的解析式是;
4.
關(guān)于頂點對稱(即:拋物線繞頂點旋轉(zhuǎn)180°)
關(guān)于頂點對稱后,得到的解析式是;關(guān)于頂點對稱后,得到的解析式是.
5.
關(guān)于點對稱
關(guān)于點對稱后,得到的解析式是
根據(jù)對稱的性質(zhì),顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生變化,因此永遠(yuǎn)不變.求拋物線的對稱拋物線的表達(dá)式時,可以依據(jù)題意或方便運算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點坐標(biāo)及開口方向,再確定其對稱拋物線的頂點坐標(biāo)及開口方向,然后再寫出其對稱拋物線的表達(dá)式.十、二次函數(shù)與一元二次方程:1.
二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與軸交點情況):一元二次方程是二次函數(shù)當(dāng)函數(shù)值時的特殊情況.圖象與軸的交點個數(shù):①當(dāng)時,圖象與軸交于兩點,其中的是一元二次方程的兩根.這兩點間的距離.②當(dāng)時,圖象與軸只有一個交點;③當(dāng)時,圖象與軸沒有交點.
當(dāng)時,圖象落在軸的上方,無論為任何實數(shù),都有;
當(dāng)時,圖象落在軸的下方,無論為任何實數(shù),都有.2.
拋物線的圖象與軸一定相交,交點坐標(biāo)為,;3.
二次函數(shù)常用解題方法總結(jié):⑴求二次函數(shù)的圖象與軸的交點坐標(biāo),需轉(zhuǎn)化為一元二次方程;⑵求二次函數(shù)的最大(?。┲敌枰门浞椒▽⒍魏瘮?shù)由一般式轉(zhuǎn)化為頂點式;⑶根據(jù)圖象的位置判斷二次函數(shù)中,,的符號,或由二次函數(shù)中,,的符號判斷圖象的位置,要數(shù)形結(jié)合;⑷二次函數(shù)的圖象關(guān)于對稱軸對稱,可利用這一性質(zhì),求和已知一點對稱的點坐標(biāo),或已知與軸的一個交點坐標(biāo),可由對稱性求出另一個交點坐標(biāo).⑸與二次函數(shù)有關(guān)的還有二次三項式,二次三項式本身就是所含字母的二次函數(shù);下面以時為例,揭示二次函數(shù)、二次三項式和一元二次方程之間的內(nèi)在聯(lián)系:二次函數(shù)圖像參考:十一、函數(shù)的應(yīng)用二次函數(shù)應(yīng)用十二、二次函數(shù)考查重點與常見題型1.考查二次函數(shù)的定義、性質(zhì),有關(guān)試題常出現(xiàn)在選擇題中,如:已知以為自變量的二次函數(shù)的圖像經(jīng)過原點,則的值是2.考查用待定系數(shù)法求二次函數(shù)的解析式,有關(guān)習(xí)題出現(xiàn)的頻率很高,習(xí)題類型有中檔解答題和選拔性的綜合題,如:已知一條拋物線經(jīng)過(0,3),(4,6)兩點,對稱軸為,求這條拋物線的解析式。3.考查用配方法求拋物線的頂點坐標(biāo)、對稱軸、二次函數(shù)的極值,有關(guān)試題為解答題,如:已知拋物線(a≠0)與x軸的兩個交點的橫坐標(biāo)是-1、3,與y軸交點的縱坐標(biāo)是-(1)確定拋物線的解析式;(2)用配方法確定拋物線的開口方向、對稱軸和頂點坐標(biāo).4.考查代數(shù)與幾何的綜合能力,常見的作為專項壓軸題?!纠}經(jīng)典】由拋物線的位置確定系數(shù)的符號例1(1)二次函數(shù)的圖像如圖1,則點在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限(2)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖2所示,則下列結(jié)論:①a、b同號;②當(dāng)x=1和x=3時,函數(shù)值相等;③4a+b=0;④當(dāng)y=-2時,x的值只能取0.其中正確的個數(shù)是()A.1個B.2個C.3個D.4個【點評】弄清拋物線的位置與系數(shù)a,b,c之間的關(guān)系,是解決問題的關(guān)鍵.例2.已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(-2,O)、(x1,0),且1<x1<2,與y軸的正半軸的交點在點(O,2)的下方.下列結(jié)論:①a<b<0;②2a+c>O;③4a+c<O;④2a-b+1>O,其中正確結(jié)論的個數(shù)為()A1個B.2個C.3個D.4個會用待定系數(shù)法求二次函數(shù)解析式例3.已知:關(guān)于x的一元二次方程ax2+bx+c=3的一個根為x=-2,且二次函數(shù)y=ax2+bx+c的對稱軸是直線x=2,則拋物線的頂點坐標(biāo)為()A(2,-3)B.(2,1)C(2,3)D.(3,2)答案:C例4、如圖(單位:m),等腰三角形ABC以2米/秒的速度沿直線L向正方形移動,直到AB與CD重合.設(shè)x秒時,三角形與正方形重疊部分的面積為ym2.(1)寫出y與x的關(guān)系式;(2)當(dāng)x=2,3.5時,y分別是多少?(3)當(dāng)重疊部分的面積是正方形面積的一半時,三角形移動了多長時間?求拋物線頂點坐標(biāo)、對稱軸.例5、已知拋物線y=x2+x-.(1)用配方法求它的頂點坐標(biāo)和對稱軸.(2)若該拋物線與x軸的兩個交點為A、B,求線段AB的長.【點評】本題(1)是對二次函數(shù)的“基本方法”的考查,第(2)問主要考查二次函數(shù)與一元二次方程的關(guān)系.例6、“已知函數(shù)的圖象經(jīng)過點A(c,-2),求證:這個二次函數(shù)圖象的對稱軸是x=3?!鳖}目中的矩形框部分是一段被墨水污染了無法辨認(rèn)的文字。(1)根據(jù)已知和結(jié)論中現(xiàn)有的信息,你能否求出題中的二次函數(shù)解析式?若能,請寫出求解過程,并畫出二次函數(shù)圖象;若不能,請說明理由。(2)請你根據(jù)已有的信息,在原題中的矩形框中,填加一個適當(dāng)?shù)臈l件,把原題補充完整。點評:對于第(1)小題,要根據(jù)已知和結(jié)論中現(xiàn)有信息求出題中的二次函數(shù)解析式,就要把原來的結(jié)論“函數(shù)圖象的對稱軸是x=3”當(dāng)作已知來用,再結(jié)合條件“圖象經(jīng)過點A(c,-2)”,就可以列出兩個方程了,而解析式中只有兩個未知數(shù),所以能夠求出題中的二次函數(shù)解析式。對于第(2)小題,只要給出的條件能夠使求出的二次函數(shù)解析式是第(1)小題中的解析式就可以了。而從不同的角度考慮可以添加出不同的條件,可以考慮再給圖象上的一個任意點的坐標(biāo),可以給出頂點的坐標(biāo)或與坐標(biāo)軸的一個交點的坐標(biāo)等。[解答](1)根據(jù)的圖象經(jīng)過點A(c,-2),圖象的對稱軸是x=3,得解得所以所求二次函數(shù)解析式為圖象如圖所示。(2)在解析式中令y=0,得,解得所以可以填“拋物線與x軸的一個交點的坐標(biāo)是(3+”或“拋物線與x軸的一個交點的坐標(biāo)是令x=3代入解析式,得所以拋物線的頂點坐標(biāo)為所以也可以填拋物線的頂點坐標(biāo)為等等。函數(shù)主要關(guān)注:通過不同的途徑(圖象、解析式等)了解函數(shù)的具體特征;借助多種現(xiàn)實背景理解函數(shù);將函數(shù)視為“變化過程中變量之間關(guān)系”的數(shù)學(xué)模型;滲透函數(shù)的思想;關(guān)注函數(shù)與相關(guān)知識的聯(lián)系。十三、用二次函數(shù)解決最值問題例1已知邊長為4的正方形截去一個角后成為五邊形ABCDE(如圖),其中AF=2,BF=1.試在AB上求一點P,使矩形PNDM有最大面積.【評析】本題是一道代數(shù)幾何綜合題,把相似三角形與二次函數(shù)的知識有機的結(jié)合在一起,能很好考查學(xué)生的綜合應(yīng)用能力.同時,也給學(xué)生探索解題思路留下了思維空間.例2某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價x(元)與產(chǎn)品的日銷售量y(件)之間的關(guān)系如下表:若日銷售量y是銷售價x的一次函數(shù).(1)求出日銷售量y(件)與銷售價x(元)的函數(shù)關(guān)系式;(2)要使每日的銷售利潤最大,每件產(chǎn)品的銷售價應(yīng)定為多少元?此時每日銷售利潤是多少元?【解析】(1)設(shè)此一次函數(shù)表達(dá)式為y=kx+b.則解得k=-1,b=40,即一次函數(shù)表達(dá)式為y=-x+40.(2)設(shè)每件產(chǎn)品的銷售價應(yīng)定為x元,所獲銷售利潤為w元w=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225.產(chǎn)品的銷售價應(yīng)定為25元,此時每日獲得最大銷售利潤為225元.【點評】解決最值問題應(yīng)用題的思路與一般應(yīng)用題類似,也有區(qū)別,主要有兩點:(1)設(shè)未知數(shù)在“當(dāng)某某為何值時,什么最大(或最小、最省)”的設(shè)問中,“某某”要設(shè)為自變量,“什么”要設(shè)為函數(shù);(2)問的求解依靠配方法或最值公式,而不是解方程.第六章圖形的相似一、比例線段1、比例線段的相關(guān)概念如果選用同一長度單位量得兩條線段a,b的長度分別為m,n,那么就說這兩條線段的比是或?qū)懗蒩:b=m:n在兩條線段的比a:b中,a叫做比的前項,b叫做比的后項。在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡稱比例線段若四條a,b,c,d滿足或a:b=c:d,那么a,b,c,d叫做組成比例的項,線段a,d叫做比例外項,線段b,c叫做比例內(nèi)項,線段的d叫做a,b,c的第四比例項。如果作為比例內(nèi)項的是兩條相同的線段,即或a:b=b:c,那么線段b叫做線段a,c的比例中項。2、比例的性質(zhì)(1)基本性質(zhì)①a:b=c:dad=bc②a:b=b:c(2)更比性質(zhì)(交換比例的內(nèi)項或外項)(交換內(nèi)項)(交換外項)(同時交換內(nèi)項和外項)(3)反比性質(zhì)(交換比的前項、后項):(4)合比性質(zhì):(5)等比性質(zhì):3、黃金分割把線段AB分成兩條線段AC,BC(AC>BC),并且使AC是AB和BC的比例中項,叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點,其中AC=AB0.618AB二、平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例。推論:(1)平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例。逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。(2)平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對應(yīng)成比例。三、相似三角形1、相似三角形的概念對應(yīng)角相等,對應(yīng)邊成比例的三角形叫做相似三角形。相似用符號“∽”來表示,讀作“相似于”。相似三角形對應(yīng)邊的比叫做相似比(或相似系數(shù))。2、相似三角形的基本定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。用數(shù)學(xué)語言表述如下:∵DE∥BC,∴△ADE∽△ABC相似三角形的等價關(guān)系:(1)反身性:對于任一△ABC,都有△ABC∽△ABC;(2)對稱性:若△ABC∽△A’B’C’,則△A’B’C’∽△ABC(3)傳遞性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,則△ABC∽△A’’B’’C’’。3、三角形相似的判定(1)三角形相似的判定方法①定義法:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形相似②平行法:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似③判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似,可簡述為兩角對應(yīng)相等,兩三角形相似。④判定定理2:如果一個三角形的兩條邊和另一個三角形的兩條邊對應(yīng)相等,并且夾角相等,那么這兩個三角形相似,可簡述為兩邊對應(yīng)成比例且夾角相等,兩三角形相似。⑤判定定理3:如果一個三角形的三條邊與另一個三角形的三條邊對應(yīng)成比例,那么這兩個三角形相似,可簡述為三邊對應(yīng)成比例,兩三角形相似(2)直角三角形相似的判定方法①以上各種判定方法均適用②定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似③垂直法:直角三角形被斜邊上的高分成的兩個直角三角形與原三角形相似。4、相似三角形的性質(zhì)(1)相似三角形的對應(yīng)角相等,對應(yīng)邊成比例(2)相似三角形對應(yīng)高的比、對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比(3)相似三角形周長的比等于相似比(4)相似三角形面積的比等于相似比的平方。5、相似多邊形(1)如果兩個邊數(shù)相同的多邊形的對應(yīng)角相等,對應(yīng)邊成比例,那么這兩個多邊形叫做相似多邊形。相似多邊形對應(yīng)邊的比叫做相似比(或相似系數(shù))(2)相似多邊形的性質(zhì)①相似多邊形的對應(yīng)角相等,對應(yīng)邊成比例②相似多邊形周長的比、對應(yīng)對角線的比都等于相似比③相似多邊形中的對應(yīng)三角形相似,相似比等于相似多邊形的相似比④相似多邊形面積的比等于相似比的平方6、位似圖形如果兩個圖形不僅是相似圖形,而且每組對應(yīng)點所在直線都經(jīng)過同一個點,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,此時的相似比叫做位似比。性質(zhì):每一組對應(yīng)點和位似中心在同一直線上,它們到位似中心的距離之比都等于位似比。由一個圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個圖形放大或縮小。第七章銳角函數(shù)一、知識框架二、知識點、概念總結(jié)1.Rt△ABC中(1)∠A的對邊與斜邊的比值是∠A的正弦,記作sinA=∠A的對邊/斜邊(2)∠A的鄰邊與斜邊的比值是∠A的余弦,記作cosA=∠A的鄰邊/斜邊(3)∠A的對邊與鄰邊的比值是∠A的正切,記作tanA=∠A的對邊/∠A的鄰邊(4)∠A的鄰邊與對邊的比值是∠A的余切,記作cota=∠A的鄰邊/∠A的對邊2.特殊值的三角函數(shù):3.互余角的三角函數(shù)間的關(guān)系sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα.4.同角三角函數(shù)間的關(guān)系1)平方關(guān)系:sin2(α)+cos2(α)=1tan2(α)+1=sec2(α)cot2(α)+1=csc2(α)2)積的關(guān)系:sinα=tanα·cosαcosα=cotα·sinαtanα=sinα·secαcotα=cosα·cscαsecα=tanα·cscαcscα=secα·cotα3)倒數(shù)關(guān)系:tanα·cotα=1sinα·cscα=1cosα·secα=15.三角函數(shù)值(1)特殊角三角函數(shù)值(2)0°~90°的任意角的三角函數(shù)值,查三角函數(shù)表。(3)銳角三角函數(shù)值的變化情況:(i)銳角三角函數(shù)值都是正值(ii)當(dāng)角度在0°~90°間變化時:1)正弦值隨著角度的增大(或減?。┒龃螅ɑ驕p?。?)余弦值隨著角度的增大(或減?。┒鴾p小(或增大);3)正切值隨著角度的增大(或減?。┒龃螅ɑ驕p小);4)余切值隨著角度的增大(或減?。┒鴾p?。ɑ蛟龃螅╥ii)當(dāng)角度在0°≤∠A≤90°間變化時,0≤sinα≤1,1≥cosA≥0;當(dāng)角度在0°<∠A<90°間變化時,tanA>0,cotA>0.6.解直角三角形的基本類型解直角三角形的基本類型及其解法如下表:7.仰角、俯角當(dāng)我們進行測量時,在視線與水平線所成的角中,視線在水平線上方的角叫做仰角,在水平線下方的角叫做俯角。三、考點解析:考點1銳角三角函數(shù)的概念例1(2014威海)如圖1,在下列網(wǎng)格中,小正方形的邊長均為1,點A、B、O都在格點上,則∠AOB的正弦值是()(A)(B)(C)(D)分析如圖2,作AC⊥OB于點C.利用勾股定理求得AC和AB的長,根據(jù)正弦的定義即可求解.解如圖2,作AC⊥OB于點C.則AC=,AO=,∴sin∠AOB=.因此,選D.溫馨提示銳角三角函數(shù)的概念是在直角三角形中給出的,若題目中沒有直角三角形,則須先構(gòu)造直角三角形,才能應(yīng)用銳角三角函數(shù)的有關(guān)知識來解決問題.考點2特殊角的三角函數(shù)值例2(1)(2014包頭)計算sin245°+cos30°tan60°,其結(jié)果是()(A)2(B)1(C)(D)(2)(2014涼山州)在△ABC中,若+(1-tanB)2=0,則∠C的度數(shù)是()(A)45°(B)60°(C)75°(D)105°分析(1)根據(jù)特殊角的三角函數(shù)值計算即可.(2)根據(jù)非負(fù)數(shù)的性質(zhì)可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內(nèi)角和定理可得出∠C的度數(shù).故選C.溫馨提示對于特殊角的三角函數(shù)值,要掌握兩個方面:(1)已知一個特殊角,要知道這個特殊角的三角函數(shù)值;(2)已知一個特殊角的三角函數(shù)值,則要知道這個特殊角的度數(shù).考點3解直角三角形例3(2014甘孜州)如圖3,在△ABC中,∠ABC=90°,∠A=30°,D是邊AB上一點,∠BDC=45°,AD=4,求BC的長.(結(jié)果保留根號)分析由題意,得到△BCD為等腰直角三角形,故有BD=BC.在Rt△ABC中,利用銳角三角函數(shù)定義求出BC的長即可,解∵∠B=90°,∠BDC=45°,∴△BCD為等腰直角三角形,∴BD=BC.在Rt△ABC中,tan∠A=tan30°=,即解得BC=2(+1).溫馨提示解直角三角形時,必須已知兩個元素,且至少有一條邊.解題過程中,要注意直角三角形的邊、角和銳角三角函數(shù)之間的相互轉(zhuǎn)化.考點4解非直角三角形例4(2014濟寧)如圖4,在△ABC中,∠A=30°,∠B=45°,AC=2,則AB的長為_______.分析如圖5,過點C作CD⊥AB于點D,求出∠BCD=∠B,推出BD=CD.根據(jù)含30度角的直角三角形的性質(zhì)求出CD,再根據(jù)勾股定理求出AD,相加即可求出答案.解如圖5,過點C作CD⊥AB于點D,則有∠ADC=∠BDC=90°,∵∠B=45°.∴∠BCD=∠B=45°,∴CD=BD.∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理,得AD==3,∴AB=AD+BD=3+.溫馨提示解題的關(guān)鍵是應(yīng)用轉(zhuǎn)化思想,通過添加輔助線把非直角三角形轉(zhuǎn)化為直角三角形,再應(yīng)用解直角三角形的知識來處理.考點5應(yīng)用解直角三角形的知識解決實際問題例5(2014聊城)如圖6,美麗的徒駭河宛如一條玉帶穿城而過,沿河兩岸的濱河大道和風(fēng)景帶成為我市的一道新景觀,在數(shù)學(xué)課外實踐活動中,小亮在河西岸濱河大道一段AC上的A,B兩點處,利用測角儀分別對東岸的觀景臺D進行了測量,分別測得∠DAC=60°,LDBC=75°,又已知AB=100米,求觀景臺D到徒駭河西岸AC的距離約為多少米(精確到1米).(tan60°≈1.73,tan75°≈3.73)分析如圖7,過點D作DE⊥AC于點E.通過解Rt△EAD和Rt△EBD分別求得AE、BE的長度,又AB=AE-BE=100,把相關(guān)線段的長度代入列出關(guān)于ED的方程=100,通過解該方程求得ED的長度.答:觀景臺D到徒駭河西岸AC的距離約為323米.溫馨提示解題時根據(jù)實際情況建立數(shù)學(xué)模型,將實際問題抽象為解直角三角形的數(shù)學(xué)問題,正確畫出圖形,找準(zhǔn)三角形,弄清已知條件中各量之間的關(guān)系,若三角形是直角三角形,根據(jù)邊角關(guān)系進行計算;若三角形不是直角三角形,可通過添加輔助線構(gòu)造出直角三角形來解決.第八章統(tǒng)計和概率一、統(tǒng)計1、統(tǒng)計活動收集數(shù)據(jù)(普查、抽樣調(diào)查)整理和表示數(shù)據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021高考英語四川岳池縣教研室統(tǒng)練(11)及答案-閱讀類
- 《創(chuàng)新服務(wù)方式》課件
- 2025年人教版八年級數(shù)學(xué)寒假預(yù)習(xí) 第07講 平行四邊形的性質(zhì)(3個知識點+4大考點舉一反三+過關(guān)測試)
- 2025年人教版七年級數(shù)學(xué)寒假復(fù)習(xí) 專題06 幾何圖形初步(3重點串講+17考點提升+過關(guān)檢測)
- 【名師金典】2022新課標(biāo)高考生物總復(fù)習(xí)限時檢測9ATP與細(xì)胞呼吸-
- 【高考復(fù)習(xí)方案】2021屆高考語文一輪復(fù)習(xí)作業(yè)答案(新課標(biāo)-廣東省專用)
- 八年級歷史電子書
- 《醫(yī)學(xué)倫理討論會》課件
- 【狀元之路】2022高考地理總復(fù)習(xí)開卷速查18城市化-
- 【優(yōu)化探究】2022屆高三物理一輪復(fù)習(xí)知能檢測:3-3牛頓運動定律的綜合應(yīng)用-
- DB45T 1831-2018 汽車加油加氣站防雷裝置檢測技術(shù)規(guī)范
- 《兒歌運用于幼兒園教育問題研究的文獻(xiàn)綜述》8600字
- 懸掛燈籠施工方案
- 水資源調(diào)配與優(yōu)化-洞察分析
- 某自來水公司自然災(zāi)害應(yīng)急預(yù)案樣本(2篇)
- 2024-2025學(xué)年語文二年級上冊 統(tǒng)編版期末測試卷(含答案)
- 2024-2025年江蘇專轉(zhuǎn)本英語歷年真題(含答案)
- 屋頂光伏發(fā)電項目EPC工程總承包售后服務(wù)保證措施
- 影視制作技能薪酬激勵
- 第四屆全省職業(yè)技能大賽技術(shù)文件-工業(yè)控制樣題
- 24秋國家開放大學(xué)《勞動關(guān)系與社會保障實務(wù)》形考任務(wù)1-4參考答案
評論
0/150
提交評論