2025屆黑龍江省綏化市青岡縣縣第一中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
2025屆黑龍江省綏化市青岡縣縣第一中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
2025屆黑龍江省綏化市青岡縣縣第一中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
2025屆黑龍江省綏化市青岡縣縣第一中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
2025屆黑龍江省綏化市青岡縣縣第一中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆黑龍江省綏化市青岡縣縣第一中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)且的圖象恒過(guò)定點(diǎn),則函數(shù)圖象以點(diǎn)為對(duì)稱(chēng)中心的充要條件是()A. B.C. D.2.是平面上的一定點(diǎn),是平面上不共線的三點(diǎn),動(dòng)點(diǎn)滿足,,則動(dòng)點(diǎn)的軌跡一定經(jīng)過(guò)的()A.重心 B.垂心 C.外心 D.內(nèi)心3.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書(shū)作序時(shí),介紹了“勾股圓方圖”,又稱(chēng)“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類(lèi)比“趙爽弦圖”,可類(lèi)似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.4.某地區(qū)教育主管部門(mén)為了對(duì)該地區(qū)模擬考試成進(jìn)行分析,隨機(jī)抽取了200分到450分之間的2000名學(xué)生的成績(jī),并根據(jù)這2000名學(xué)生的成績(jī)畫(huà)出樣本的頻率分布直方圖,如圖所示,則成績(jī)?cè)冢瑑?nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.16005.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.6.已知函數(shù)是偶函數(shù),當(dāng)時(shí),函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.7.已知,滿足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則()A. B. C. D.8.已知集合,,,則()A. B. C. D.9.年某省將實(shí)行“”的新高考模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒(méi)有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B. C. D.10.已知集合,,則()A. B.C. D.11.若,,,點(diǎn)C在AB上,且,設(shè),則的值為()A. B. C. D.12.已知的值域?yàn)椋?dāng)正數(shù)a,b滿足時(shí),則的最小值為()A. B.5 C. D.9二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)的圖像與直線的三個(gè)相鄰交點(diǎn)的橫坐標(biāo)分別是,,,則實(shí)數(shù)的值為_(kāi)_______.14.如圖,己知半圓的直徑,點(diǎn)是弦(包含端點(diǎn),)上的動(dòng)點(diǎn),點(diǎn)在弧上.若是等邊三角形,且滿足,則的最小值為_(kāi)__________.15.若復(fù)數(shù)滿足,其中為虛數(shù)單位,則的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為_(kāi)____.16.已知函數(shù),若函數(shù)恰有4個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)求直線l的普通方程和圓C的直角坐標(biāo)方程;(2)直線l與圓C交于A,B兩點(diǎn),點(diǎn)P(2,1),求|PA|?|PB|的值.18.(12分)已知,,.(1)求的最小值;(2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.20.(12分)已知的圖象在處的切線方程為.(1)求常數(shù)的值;(2)若方程在區(qū)間上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的值.21.(12分)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.22.(10分)在平面直角坐標(biāo)系中,已知直線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)的極坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由題可得出的坐標(biāo)為,再利用點(diǎn)對(duì)稱(chēng)的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點(diǎn)的坐標(biāo)為,又,所以.故選:A.【點(diǎn)睛】本題考查指數(shù)函數(shù)過(guò)定點(diǎn)問(wèn)題和函數(shù)對(duì)稱(chēng)性的應(yīng)用,屬于基礎(chǔ)題.2、B【解析】

解出,計(jì)算并化簡(jiǎn)可得出結(jié)論.【詳解】λ(),∴,∴,即點(diǎn)P在BC邊的高上,即點(diǎn)P的軌跡經(jīng)過(guò)△ABC的垂心.故選B.【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算在幾何中的應(yīng)用,根據(jù)條件中的角計(jì)算是關(guān)鍵.3、D【解析】

設(shè),則,小正六邊形的邊長(zhǎng)為,利用余弦定理可得大正六邊形的邊長(zhǎng)為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長(zhǎng)為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長(zhǎng)為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.4、B【解析】

由圖可列方程算得a,然后求出成績(jī)?cè)趦?nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績(jī)?cè)趦?nèi)的學(xué)生人數(shù).【詳解】由頻率和為1,得,解得,所以成績(jī)?cè)趦?nèi)的頻率,所以成績(jī)?cè)趦?nèi)的學(xué)生人數(shù).故選:B【點(diǎn)睛】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.5、D【解析】

根據(jù)三視圖判斷出幾何體為正四棱錐,由此計(jì)算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點(diǎn)睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計(jì)算,屬于基礎(chǔ)題.6、A【解析】

根據(jù)圖象關(guān)于軸對(duì)稱(chēng)可知關(guān)于對(duì)稱(chēng),從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對(duì)稱(chēng)圖象關(guān)于對(duì)稱(chēng)時(shí),單調(diào)遞減時(shí),單調(diào)遞增又且,即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)奇偶性、對(duì)稱(chēng)性和單調(diào)性比較函數(shù)值的大小關(guān)系問(wèn)題,關(guān)鍵是能夠通過(guò)奇偶性和對(duì)稱(chēng)性得到函數(shù)的單調(diào)性,通過(guò)自變量的大小關(guān)系求得結(jié)果.7、B【解析】

由目標(biāo)函數(shù)的最大值為9,我們可以畫(huà)出滿足條件件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點(diǎn)的坐標(biāo),然后根據(jù)分析列出一個(gè)含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫(huà)出,滿足的為常數(shù))可行域如下圖:由于目標(biāo)函數(shù)的最大值為9,可得直線與直線的交點(diǎn),使目標(biāo)函數(shù)取得最大值,將,代入得:.故選:.【點(diǎn)睛】如果約束條件中含有參數(shù),我們可以先畫(huà)出不含參數(shù)的幾個(gè)不等式對(duì)應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點(diǎn),然后得到一個(gè)含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.8、A【解析】

求得集合中函數(shù)的值域,由此求得,進(jìn)而求得.【詳解】由,得,所以,所以.故選:A【點(diǎn)睛】本小題主要考查函數(shù)值域的求法,考查集合補(bǔ)集、交集的概念和運(yùn)算,屬于基礎(chǔ)題.9、B【解析】

甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.10、C【解析】

求出集合,計(jì)算出和,即可得出結(jié)論.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查交集和并集的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.11、B【解析】

利用向量的數(shù)量積運(yùn)算即可算出.【詳解】解:,,又在上,故選:【點(diǎn)睛】本題主要考查了向量的基本運(yùn)算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識(shí)的綜合應(yīng)用.12、A【解析】

利用的值域?yàn)?求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域?yàn)?∴,∴,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴的最小值為.故選:A.【點(diǎn)睛】本題主要考查了對(duì)數(shù)復(fù)合函數(shù)的值域運(yùn)用,同時(shí)也考查了基本不等式中“1的運(yùn)用”,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】

由題可分析函數(shù)與的三個(gè)相鄰交點(diǎn)中不相鄰的兩個(gè)交點(diǎn)距離為,即,進(jìn)而求解即可【詳解】由題意得函數(shù)的最小正周期,解得故答案為:4【點(diǎn)睛】本題考查正弦型函數(shù)周期的應(yīng)用,考查求正弦型函數(shù)中的14、1【解析】

建系,設(shè),表示出點(diǎn)坐標(biāo),則,根據(jù)的范圍得出答案.【詳解】解:以為原點(diǎn)建立平面坐標(biāo)系如圖所示:則,,,,設(shè),則,,,,,,,顯然當(dāng)取得最大值4時(shí),取得最小值1.故答案為:1.【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算,坐標(biāo)運(yùn)算,屬于中檔題.15、【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出得答案.【詳解】,,則,的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為,故答案為【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.16、【解析】

函數(shù)恰有4個(gè)零點(diǎn),等價(jià)于函數(shù)與函數(shù)的圖象有四個(gè)不同的交點(diǎn),畫(huà)出函數(shù)圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】函數(shù)恰有4個(gè)零點(diǎn),等價(jià)于函數(shù)與函數(shù)的圖象有四個(gè)不同的交點(diǎn),畫(huà)出函數(shù)圖象如下圖所示:由圖象可知:實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查了已知函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)取值范圍問(wèn)題,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)直線的普通方程,圓的直角坐標(biāo)方程:.(2)【解析】

(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.(2)將直線的參數(shù)方程代入圓的直角坐標(biāo)方程,利用一元二次方程根和系數(shù)關(guān)系式即可求解.【詳解】(1)直線l的參數(shù)方程為(t為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為x+y﹣3=0.圓C的極坐標(biāo)方程為ρ2﹣4ρcosθ=3,轉(zhuǎn)換為直角坐標(biāo)方程為x2+y2﹣4x﹣3=0.(2)把直線l的參數(shù)方程為(t為參數(shù)),代入圓的直角坐標(biāo)方程x2+y2﹣4x﹣3=0,得到,所以|PA||PB|=|t1t2|=6.【點(diǎn)睛】本題考查參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.18、(1)2;(2).【解析】

(1)化簡(jiǎn)得,所以,展開(kāi)后利用基本不等式求最小值即可;(2)由(1),原不等式可轉(zhuǎn)化為,討論去絕對(duì)值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當(dāng)且僅當(dāng)且即時(shí),.(2)由(1)知,,對(duì)任意,都有,∴,即.①當(dāng)時(shí),有,解得;②當(dāng),時(shí),有,解得;③當(dāng)時(shí),有,解得;綜上,,∴實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查基本不等式的運(yùn)用和求解含絕對(duì)值的不等式,考查學(xué)生的分類(lèi)思想和計(jì)算能力,屬于中檔題.19、(1)(2)【解析】

(1)利用零點(diǎn)分段法,求得不等式的解集.(2)先求得,即,再根據(jù)“的代換”的方法,結(jié)合基本不等式,求得的最小值.【詳解】(1)當(dāng)時(shí),,即,無(wú)解;當(dāng)時(shí),,即,得;當(dāng)時(shí),,即,得.故所求不等式的解集為.(2)因?yàn)?,所以,則,.當(dāng)且僅當(dāng)即時(shí)取等號(hào).故的最小值為.【點(diǎn)睛】本小題主要考查零點(diǎn)分段法解絕對(duì)值不等式,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1);(2)或.【解析】

(1)求出,由,建立方程求解,即可求出結(jié)論;(2)根據(jù)函數(shù)的單調(diào)區(qū)間,極值,做出函數(shù)在的圖象,即可求解.【詳解】(1),由題意知,解得(舍去)或.(2)當(dāng)時(shí),故方程有根,根為或,+0-0+極大值極小值由表可見(jiàn),當(dāng)時(shí),有極小值0.由上表可知的減函數(shù)區(qū)間為,遞增區(qū)間為,.因?yàn)椋?由數(shù)形結(jié)合可得或.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,應(yīng)用函數(shù)的圖象是解題的關(guān)鍵,意在考查直觀想象、邏輯推理和數(shù)學(xué)計(jì)算能力,屬于中檔題.21、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根據(jù)條件由正弦定理得,又c=2a,所以,由余弦定理算出,進(jìn)而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計(jì)算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論