版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆青海省大通回族土族自治縣第一完全中學(xué)高考沖刺模擬數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]2.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i3.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.4.小明有3本作業(yè)本,小波有4本作業(yè)本,將這7本作業(yè)本混放在-起,小明從中任取兩本.則他取到的均是自己的作業(yè)本的概率為()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.6.設(shè)點(diǎn),,不共線,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件7.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.8.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,4,8,14,23,36,54,則該數(shù)列的第19項(xiàng)為()(注:)A.1624 B.1024 C.1198 D.15609.某設(shè)備使用年限x(年)與所支出的維修費(fèi)用y(萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計(jì)劃維修費(fèi)用超過(guò)15萬(wàn)元將該設(shè)備報(bào)廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年10.已知函數(shù)的圖像與一條平行于軸的直線有兩個(gè)交點(diǎn),其橫坐標(biāo)分別為,則()A. B. C. D.11.已知函數(shù)的值域?yàn)?,函?shù),則的圖象的對(duì)稱中心為()A. B.C. D.12.已知是函數(shù)圖象上的一點(diǎn),過(guò)作圓的兩條切線,切點(diǎn)分別為,則的最小值為()A. B. C.0 D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,點(diǎn)在邊上,且,設(shè),,則________(用,表示)14.?dāng)?shù)據(jù)的標(biāo)準(zhǔn)差為_(kāi)____.15.已知雙曲線的一條漸近線經(jīng)過(guò)點(diǎn),則該雙曲線的離心率為_(kāi)______.16.設(shè)為數(shù)列的前項(xiàng)和,若,則____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某大學(xué)開(kāi)學(xué)期間,該大學(xué)附近一家快餐店招聘外賣(mài)騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣(mài)業(yè)務(wù)每完成一單提成2元;方案規(guī)定每日底薪150元,外賣(mài)業(yè)務(wù)的前54單沒(méi)有提成,從第55單開(kāi)始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機(jī)選取一天,估計(jì)這一天該快餐店的騎手的人均日外賣(mài)業(yè)務(wù)量不少于65單的概率;(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應(yīng)聘,四人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請(qǐng)你為新聘騎手做出日工資方案的選擇,并說(shuō)明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)18.(12分)如圖,⊙的直徑的延長(zhǎng)線與弦的延長(zhǎng)線相交于點(diǎn),為⊙上一點(diǎn),,交于點(diǎn).求證:~.19.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負(fù)半軸的公共點(diǎn)分別為、,又記與在第一、第四象限的公共點(diǎn)分別為、.(1)若,且恰為的左焦點(diǎn),求的兩條漸近線的方程;(2)若,且,求實(shí)數(shù)的值;(3)若恰為的左焦點(diǎn),求證:在軸上不存在這樣的點(diǎn),使得.20.(12分)設(shè)函數(shù).(1)解不等式;(2)記的最大值為,若實(shí)數(shù)、、滿足,求證:.21.(12分)已知函數(shù).(1)求不等式的解集;(2)若存在實(shí)數(shù),使得不等式成立,求實(shí)數(shù)的取值范圍.22.(10分)已知a,b∈R,設(shè)函數(shù)f(x)=(I)若b=0,求f(x)的單調(diào)區(qū)間:(II)當(dāng)x∈[0,+∞)時(shí),f(x)的最小值為0,求a+5b的最大值.注:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè),可得,構(gòu)造()22,結(jié)合,可得,根據(jù)向量減法的模長(zhǎng)不等式可得解.【詳解】設(shè),則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點(diǎn)睛】本題考查了向量的運(yùn)算綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2、B【解析】
利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.3、A【解析】
根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡(jiǎn)即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運(yùn)算能力,屬于基礎(chǔ)題.4、A【解析】
利用計(jì)算即可,其中表示事件A所包含的基本事件個(gè)數(shù),為基本事件總數(shù).【詳解】從7本作業(yè)本中任取兩本共有種不同的結(jié)果,其中,小明取到的均是自己的作業(yè)本有種不同結(jié)果,由古典概型的概率計(jì)算公式,小明取到的均是自己的作業(yè)本的概率為.故選:A.【點(diǎn)睛】本題考查古典概型的概率計(jì)算問(wèn)題,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.5、B【解析】
列出循環(huán)的每一步,進(jìn)而可求得輸出的值.【詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時(shí):,,所以:不成立.繼續(xù)進(jìn)行循環(huán),…,當(dāng),時(shí),成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):程序框圖的循環(huán)結(jié)構(gòu)和條件結(jié)構(gòu)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.6、C【解析】
利用向量垂直的表示、向量數(shù)量積的運(yùn)算,結(jié)合充分必要條件的定義判斷即可.【詳解】由于點(diǎn),,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.7、B【解析】
根據(jù)在上投影為,以及,可得;再對(duì)所求模長(zhǎng)進(jìn)行平方運(yùn)算,可將問(wèn)題轉(zhuǎn)化為模長(zhǎng)和夾角運(yùn)算,代入即可求得.【詳解】在上投影為,即又本題正確選項(xiàng):【點(diǎn)睛】本題考查向量模長(zhǎng)的運(yùn)算,對(duì)于含加減法運(yùn)算的向量模長(zhǎng)的求解,通常先求解模長(zhǎng)的平方,再開(kāi)平方求得結(jié)果;解題關(guān)鍵是需要通過(guò)夾角取值范圍的分析,得到的最小值.8、B【解析】
根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項(xiàng)公式和前項(xiàng)和,利用累加法求得數(shù)列的通項(xiàng)公式,進(jìn)而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設(shè)該數(shù)列為,令,設(shè)的前項(xiàng)和為,又令,設(shè)的前項(xiàng)和為.易,,進(jìn)而得,所以,則,所以,所以.故選:B【點(diǎn)睛】本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查累加法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.9、D【解析】
根據(jù)樣本中心點(diǎn)在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計(jì)第年維修費(fèi)用超過(guò)15萬(wàn)元.故選:D.【點(diǎn)睛】本題考查回歸直線過(guò)樣本中心點(diǎn)、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.10、A【解析】
畫(huà)出函數(shù)的圖像,函數(shù)對(duì)稱軸方程為,由圖可得與關(guān)于對(duì)稱,即得解.【詳解】函數(shù)的圖像如圖,對(duì)稱軸方程為,,又,由圖可得與關(guān)于對(duì)稱,故選:A【點(diǎn)睛】本題考查了正弦型函數(shù)的對(duì)稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11、B【解析】
由值域?yàn)榇_定的值,得,利用對(duì)稱中心列方程求解即可【詳解】因?yàn)?,又依題意知的值域?yàn)椋缘?,,所以,令,得,則的圖象的對(duì)稱中心為.故選:B【點(diǎn)睛】本題考查三角函數(shù)的圖像及性質(zhì),考查函數(shù)的對(duì)稱中心,重點(diǎn)考查值域的求解,易錯(cuò)點(diǎn)是對(duì)稱中心縱坐標(biāo)錯(cuò)寫(xiě)為012、C【解析】
先畫(huà)出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因?yàn)樵谏蠁握{(diào)遞增,且,所以當(dāng)時(shí),;當(dāng)時(shí),,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當(dāng)時(shí)等號(hào)成立).故選:C【點(diǎn)睛】此題考查的是兩個(gè)向量的數(shù)量積的最小值,利用了導(dǎo)數(shù)求解,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
結(jié)合圖形及向量的線性運(yùn)算將轉(zhuǎn)化為用向量表示,即可得到結(jié)果.【詳解】在中,因?yàn)?,所以,又因?yàn)?,所以.故答案為:【點(diǎn)睛】本題主要考查三角形中向量的線性運(yùn)算,關(guān)鍵是利用已知向量為基底,將未知向量通過(guò)幾何條件向基底轉(zhuǎn)化.14、【解析】
先計(jì)算平均數(shù)再求解方差與標(biāo)準(zhǔn)差即可.【詳解】解:樣本的平均數(shù),這組數(shù)據(jù)的方差是標(biāo)準(zhǔn)差,故答案為:【點(diǎn)睛】本題主要考查了標(biāo)準(zhǔn)差的計(jì)算,屬于基礎(chǔ)題.15、【解析】
根據(jù)雙曲線方程,可得漸近線方程,結(jié)合題意可表示,再由雙曲線a,b,c關(guān)系表示,最后結(jié)合雙曲線離心率公式計(jì)算得答案.【詳解】因?yàn)殡p曲線為,所以該雙曲線的漸近線方程為.又因?yàn)槠湟粭l漸近線經(jīng)過(guò)點(diǎn),即,則,由此可得.故答案為:.【點(diǎn)睛】本題考查由雙曲線的漸近線構(gòu)建方程表示系數(shù)關(guān)系進(jìn)而求離心率,屬于基礎(chǔ)題.16、【解析】
當(dāng)時(shí),由,解得,當(dāng)時(shí),,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項(xiàng)公式.【詳解】當(dāng)時(shí),,即,當(dāng)時(shí),,兩式相減可得,即,即,故數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,所以.故答案為:【點(diǎn)睛】本題考查數(shù)列的前項(xiàng)和與通項(xiàng)公式的關(guān)系,還考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)0.4;(2);(3)應(yīng)選擇方案,理由見(jiàn)解析【解析】
(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣(mài)業(yè)務(wù)量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨(dú)立重復(fù)試驗(yàn)概率求法,先求得四人中有0人、1人選擇方案的概率,再由對(duì)立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;(3)設(shè)騎手每日完成外賣(mài)業(yè)務(wù)量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計(jì)算兩種計(jì)算方式下的數(shù)學(xué)期望,并根據(jù)數(shù)學(xué)期望作出選擇.【詳解】(1)設(shè)事件為“隨機(jī)選取一天,這一天該快餐店的騎手的人均日外賣(mài)業(yè)務(wù)量不少于65單”.根據(jù)頻率分布直方圖可知快餐店的人均日外賣(mài)業(yè)務(wù)量不少于65單的頻率分別為,∵,∴估計(jì)為0.4.(2)設(shè)事件′為“甲、乙、丙、丁四名騎手中至少有兩名騎手選擇方案”,設(shè)事件,為“甲、乙、丙、丁四名騎手中恰有人選擇方案”,則,所以四名騎手中至少有兩名騎手選擇方案的概率為.(3)設(shè)騎手每日完成外賣(mài)業(yè)務(wù)量為件,方案的日工資,方案的日工資,所以隨機(jī)變量的分布列為1601802002202402602800.050.050.20.30.20.150.05;同理,隨機(jī)變量的分布列為1501802302803300.30.30.20.150.05.∵,∴建議騎手應(yīng)選擇方案.【點(diǎn)睛】本題考查了頻率分布直方圖的簡(jiǎn)單應(yīng)用,獨(dú)立重復(fù)試驗(yàn)概率的求法,數(shù)學(xué)期望的求法并由期望作出方案選擇,屬于中檔題.18、證明見(jiàn)解析【解析】
根據(jù)相似三角形的判定定理,已知兩個(gè)三角形有公共角,題中未給出線段比例關(guān)系,故可根據(jù)判定定理一需找到另外一組相等角,結(jié)合平面幾何的知識(shí)證得即可.【詳解】證明:∵,所以,又因?yàn)?,所以.在與中,,,故~.【點(diǎn)睛】本題考查平面幾何中同弧所對(duì)的圓心角與圓周角的關(guān)系、相似三角形的判定定理;考查邏輯推理能力和數(shù)形結(jié)合思想;分析圖形,找出角與角之間的關(guān)系是證明本題的關(guān)鍵;屬于基礎(chǔ)題.19、(1);(2);(2)見(jiàn)解析.【解析】
(1)由圓的方程求出點(diǎn)坐標(biāo),得雙曲線的,再計(jì)算出后可得漸近線方程;(2)設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標(biāo),計(jì)算;(3)由已知得,設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點(diǎn)不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,設(shè),由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設(shè)由得:,,由得,解得,,,所以,,,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),等號(hào)成立,∴軸上不存在點(diǎn),使得.【點(diǎn)睛】本題考查求漸近線方程,考查圓與雙曲線相交問(wèn)題.考查向量的加法運(yùn)算,本題對(duì)學(xué)生的運(yùn)算求解能力要求較高,解題時(shí)都是直接求出交點(diǎn)坐標(biāo).難度較大,屬于困難題.20、(1)(2)證明見(jiàn)解析【解析】
(1)采用零點(diǎn)分段法:、、,由此求解出不等式的解集;(2)先根據(jù)絕對(duì)值不等式的幾何意義求解出的值,然后利用基本不等式及其變形完成證明.【詳解】(1)當(dāng)時(shí),不等式為,解得當(dāng)時(shí),不等式為,解得當(dāng)時(shí),不等式為,解得∴原不等式的解集為(2)當(dāng)且僅當(dāng)即時(shí)取等號(hào),∴,∴∵,∴,∴(當(dāng)且僅當(dāng)時(shí)取“”)同理可得,∴∴(當(dāng)且僅當(dāng)時(shí)取“”)【點(diǎn)睛】本題考查絕對(duì)值不等式的解法以及利用基本不等式證明不等式,難度一般.(1)常見(jiàn)的絕對(duì)值不等式解法:零點(diǎn)分段法、圖象法、幾何意義
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江省紹興市2024-2025學(xué)年高二上學(xué)期12月月考語(yǔ)文試題及參考答案
- 《計(jì)算語(yǔ)言學(xué)概論》課件
- 體癬的臨床護(hù)理
- 《試乘試駕培訓(xùn)》課件
- 2021年連鎖包點(diǎn)行業(yè)巴比食品分析報(bào)告
- 皮膚松弛的臨床護(hù)理
- JJF(陜) 074-2021 應(yīng)變控制式直剪儀校準(zhǔn)規(guī)范
- 《計(jì)數(shù)器和寄存器》課件
- 個(gè)人職業(yè)素養(yǎng)的提升方向計(jì)劃
- 班主任的班級(jí)學(xué)習(xí)目標(biāo)計(jì)劃
- 中國(guó)烏茲別克斯坦電力領(lǐng)域合作發(fā)展
- 攬勝?gòu)V告作品集已
- “教-學(xué)-評(píng)”一體化視域下高中英語(yǔ)課程目標(biāo)實(shí)施研究
- SH3503石油化工驗(yàn)收文件表格
- 一年級(jí)語(yǔ)文上冊(cè)看圖寫(xiě)話訓(xùn)練
- 解碼國(guó)家安全智慧樹(shù)知到答案章節(jié)測(cè)試2023年國(guó)際關(guān)系學(xué)院
- 科研項(xiàng)目(課題)證明材料模板
- 2023簡(jiǎn)約黃藍(lán)平安校園知識(shí)競(jìng)賽PPT模板
- JJF 1999-2022轉(zhuǎn)子式流速儀校準(zhǔn)規(guī)范
- GB/T 39204-2022信息安全技術(shù)關(guān)鍵信息基礎(chǔ)設(shè)施安全保護(hù)要求
- JJG 736-1991氣體層流流量傳感器
評(píng)論
0/150
提交評(píng)論