吉林省白城市洮南市第十中學2025屆高三第四次模擬考試數(shù)學試卷含解析_第1頁
吉林省白城市洮南市第十中學2025屆高三第四次模擬考試數(shù)學試卷含解析_第2頁
吉林省白城市洮南市第十中學2025屆高三第四次模擬考試數(shù)學試卷含解析_第3頁
吉林省白城市洮南市第十中學2025屆高三第四次模擬考試數(shù)學試卷含解析_第4頁
吉林省白城市洮南市第十中學2025屆高三第四次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

吉林省白城市洮南市第十中學2025屆高三第四次模擬考試數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.點為棱長是2的正方體的內(nèi)切球球面上的動點,點為的中點,若滿足,則動點的軌跡的長度為()A. B. C. D.2.設全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}3.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.4.已知我市某居民小區(qū)戶主人數(shù)和戶主對戶型結(jié)構的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對戶型結(jié)構的滿意程度,用分層抽樣的方法抽取的戶主進行調(diào)查,則樣本容量和抽取的戶主對四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,185.如圖是國家統(tǒng)計局公布的年入境游客(單位:萬人次)的變化情況,則下列結(jié)論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差6.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.67.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.8.已知是虛數(shù)單位,則()A. B. C. D.9.已知,是函數(shù)圖像上不同的兩點,若曲線在點,處的切線重合,則實數(shù)的最小值是()A. B. C. D.110.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.11.函數(shù)圖像可能是()A. B. C. D.12.曲線在點處的切線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術》第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數(shù)物價各幾何?”借用我們現(xiàn)在的說法可以表述為:有幾個人合買一件物品,每人出8元,則付完錢后還多3元;若每人出7元,則還差4元才夠付款.問他們的人數(shù)和物品價格?答:一共有_____人;所合買的物品價格為_______元.14.(x+y)(2x-y)5的展開式中x3y3的系數(shù)為________.15.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現(xiàn)從中隨機取出的種子,則取出了帶麥銹病種子的概率是_____.16.已知兩動點在橢圓上,動點在直線上,若恒為銳角,則橢圓的離心率的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列{an}滿足條件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求數(shù)列{an}的通項公式;(Ⅱ)設bn=,Sn為數(shù)列{bn}的前n項和,求證:Sn.18.(12分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.19.(12分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.20.(12分)如圖,直三棱柱中,分別是的中點,.(1)證明:平面;(2)求二面角的余弦值.21.(12分)已知圓:和拋物線:,為坐標原點.(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線于兩點,若直線的斜率為,求點的坐標.22.(10分)在直角坐標系xOy中,直線的參數(shù)方程為(t為參數(shù)).以原點O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)寫出圓C的直角坐標方程;(2)設直線l與圓C交于A,B兩點,,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

設的中點為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動點的軌跡,最后求出動點的軌跡的長度.【詳解】設的中點為,連接,因此有,而,而平面,,因此有平面,所以動點的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標原點的空間直角坐標系:因此有,設平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動點的軌跡的長度為.故選:C【點睛】本題考查了線面垂直的判定定理的應用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學運算能力.2、C【解析】

解一元二次不等式求得集合,由此求得【詳解】由,解得或.因為或,所以.故選:C【點睛】本小題主要考查一元二次不等式的解法,考查集合補集的概念和運算,屬于基礎題.3、B【解析】

,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算、數(shù)乘運算,考查學生的運算能力,是一道中檔題.4、A【解析】

利用統(tǒng)計圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數(shù)為:故選A.【點睛】本題考查樣本容量和抽取的戶主對四居室滿意的人數(shù)的求法,是基礎題,解題時要認真審題,注意統(tǒng)計圖的性質(zhì)的合理運用.5、D【解析】

ABD可通過統(tǒng)計圖直接分析得出結(jié)論,C可通過計算中位數(shù)判斷選項是否正確.【詳解】A.由統(tǒng)計圖可知:2014年入境游客萬人次最少,故正確;B.由統(tǒng)計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數(shù)應為與的平均數(shù),大于萬次,故正確;D.由統(tǒng)計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應的方差更大,故錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表信息的讀取以及對中位數(shù)和方差的理解,難度較易.處理問題的關鍵是能通過所給統(tǒng)計圖,分析出對應的信息,對學生分析問題的能力有一定要求.6、A【解析】

由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.7、A【解析】

將正四面體補成正方體,通過正方體的對角線與球的半徑關系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關鍵在于,巧妙構造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.8、B【解析】

根據(jù)復數(shù)的乘法運算法則,直接計算,即可得出結(jié)果.【詳解】.故選B【點睛】本題主要考查復數(shù)的乘法,熟記運算法則即可,屬于基礎題型.9、B【解析】

先根據(jù)導數(shù)的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關系樹,從而得出,令函數(shù),結(jié)合導數(shù)求出最小值,即可選出正確答案.【詳解】解:當時,,則;當時,則.設為函數(shù)圖像上的兩點,當或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設則,由可得則當時,的最大值為.則在上單調(diào)遞減,則.故選:B.【點睛】本題考查了導數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點是求出和的函數(shù)關系式.本題的易錯點是計算.10、C【解析】

根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎題.11、D【解析】

先判斷函數(shù)的奇偶性可排除選項A,C,當時,可分析函數(shù)值為正,即可判斷選項.【詳解】,,即函數(shù)為偶函數(shù),故排除選項A,C,當正數(shù)越來越小,趨近于0時,,所以函數(shù),故排除選項B,故選:D【點睛】本題主要考查了函數(shù)的奇偶性,識別函數(shù)的圖象,屬于中檔題.12、A【解析】

將點代入解析式確定參數(shù)值,結(jié)合導數(shù)的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當時,代入可得,所以切點坐標為,求得導函數(shù)可得,由導數(shù)幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導數(shù)的幾何意義,在曲線上一點的切線方程求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、753【解析】

根據(jù)物品價格不變,可設共有x人,列出方程求解即可【詳解】設共有人,由題意知,解得,可知商品價格為53元.即共有7人,商品價格為53元.【點睛】本題主要考查了數(shù)學文化及一元一次方程的應用,屬于中檔題.14、40【解析】

先求出的展開式的通項,再求出即得解.【詳解】設的展開式的通項為,令r=3,則,令r=2,則,所以展開式中含x3y3的項為.所以x3y3的系數(shù)為40.故答案為:40【點睛】本題主要考查二項式定理求指定項的系數(shù),意在考查學生對這些知識的理解掌握水平.15、【解析】

求解占圓柱形容器的的總?cè)莘e的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點睛】本題主要考查了體積類的幾何概型問題,屬于基礎題.16、【解析】

根據(jù)題意可知圓上任意一點向橢圓所引的兩條切線互相垂直,恒為銳角,只需直線與圓相離,從而可得,解不等式,再利用離心率即可求解.【詳解】根據(jù)題意可得,圓上任意一點向橢圓所引的兩條切線互相垂直,因此當直線與圓相離時,恒為銳角,故,解得從而離心率.故答案為:【點睛】本題主要考查了橢圓的幾何性質(zhì),考查了邏輯分析能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)證明見解析【解析】

(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,對分奇偶討論,即可得;(Ⅱ)由(Ⅰ)得,用錯位相減法求出,運用分析法證明即可.【詳解】(Ⅰ),當為奇數(shù)時,,又由,得,當為偶數(shù)時,,又由a2=3,得,;(Ⅱ)由(1)得,則①②①-②可得:,,若證明Sn,則需要證明,又,即證明,即證,又顯然成立,故Sn得證.【點睛】本題主要考查了由遞推公式求通項公式,錯位相減法求前項和,分析法證明不等式,考查了分類討論的思想,考查了學生的運算求解與邏輯推理能力.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用勾股定理結(jié)合條件求得和,利用橢圓的定義求得的值,進而可得出,則橢圓的標準方程可求;(Ⅱ)設點、,將直線的方程與橢圓的方程聯(lián)立,利用韋達定理與弦長公式求出,利用幾何法求得直線截圓所得弦長,可得出關于的函數(shù)表達式,利用不等式的性質(zhì)可求得的取值范圍.【詳解】(Ⅰ)在橢圓上,,,,,,,又,,,,橢圓的標準方程為;(Ⅱ)設點、,聯(lián)立消去,得,,則,,設圓的圓心到直線的距離為,則.,,,,的取值范圍為.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中弦長之積的取值范圍的求解,涉及韋達定理與弦長公式的應用,考查計算能力,屬于中等題.19、(1)證明見解析(2)【解析】

(1)由已知線面垂直得,結(jié)合菱形對角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,由已知線面垂直知與平面所成角為,這樣可計算出的長,寫出各點坐標,求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因為平面,平面,所以.因為四邊形是菱形,所以.又因為,平面,平面,所以平面.解:(2)據(jù)題設知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,因為與平面所成角為,即,所以又,所以,所以所以設平面的一個法向量,則令,則.因為平面,所以為平面的一個法向量,且所以,.所以二面角的正弦值為.【點睛】本題考查線面垂直的判定定理和性質(zhì)定理,考查用向量法求二面角.立體幾何中求空間角常常是建立空間直角坐標系,用空間向量法求空間角,這樣可減少思維量,把問題轉(zhuǎn)化為計算.20、(1)證明見解析(2)【解析】

(1)連接交于點,由三角形中位線定理得,由此能證明平面.(2)以為坐標原點,的方向為軸正方向,的方向為軸正方向,的方向為軸正方向,建立空間直角坐標系.分別求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.【詳解】證明:證明:連接交于點,則為的中點.又是的中點,連接,則.因為平面,平面,所以平面.(2)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論