湖南省邵陽市第十一中學2025屆高三適應性調研考試數(shù)學試題含解析_第1頁
湖南省邵陽市第十一中學2025屆高三適應性調研考試數(shù)學試題含解析_第2頁
湖南省邵陽市第十一中學2025屆高三適應性調研考試數(shù)學試題含解析_第3頁
湖南省邵陽市第十一中學2025屆高三適應性調研考試數(shù)學試題含解析_第4頁
湖南省邵陽市第十一中學2025屆高三適應性調研考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省邵陽市第十一中學2025屆高三適應性調研考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,當輸出的時,則輸入的的值為()A.-2 B.-1 C. D.2.拋物線的焦點為,點是上一點,,則()A. B. C. D.3.若,則“”的一個充分不必要條件是A. B.C.且 D.或4.的二項展開式中,的系數(shù)是()A.70 B.-70 C.28 D.-285.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.16.已知數(shù)列的首項,且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有7.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項和,則()A. B. C. D.8.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.9.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.10.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.設函數(shù),若函數(shù)有三個零點,則()A.12 B.11 C.6 D.312.如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結論錯誤的是()A.2019年12月份,全國居民消費價格環(huán)比持平B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)()在區(qū)間上的值小于0恒成立,則的取值范圍是________.14.在平面直角坐標系中,點的坐標為,點是直線:上位于第一象限內的一點.已知以為直徑的圓被直線所截得的弦長為,則點的坐標__________.15.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.16.設等差數(shù)列的前項和為,若,,則______,的最大值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若數(shù)列前n項和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項公式:(2)設,且數(shù)列為等比數(shù)列,令,.求證:.18.(12分)已知集合,.(1)若,則;(2)若,求實數(shù)的取值范圍.19.(12分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設其中為常數(shù).若方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.20.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.21.(12分)在平面直角坐標系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設直線l:y=kx+m與橢圓C交于A,B兩點.①若A為橢圓的上頂點,M為線段AB中點,連接OM并延長交橢圓C于N,并且ON=62OM,求OB的長;②若原點O到直線l的距離為1,并且22.(10分)的內角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;綜上選B.2、B【解析】

根據(jù)拋物線定義得,即可解得結果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.3、C【解析】,∴,當且僅當時取等號.故“且”是“”的充分不必要條件.選C.4、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數(shù)是,故選A.考點:二項式定理的應用.5、A【解析】

根據(jù)等差數(shù)列和等比數(shù)列公式直接計算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計算,意在考查學生的計算能力.6、C【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義進行判斷即可.【詳解】A:當時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當時,因此有常數(shù),因此是等差數(shù)列,因此當不是等差數(shù)列時,一定有,故本說法正確;D:當時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎題.7、B【解析】

利用等差數(shù)列性質,若,則求出,再利用等差數(shù)列前項和公式得【詳解】解:因為,由等差數(shù)列性質,若,則得,.為數(shù)列的前項和,則.故選:.【點睛】本題考查等差數(shù)列性質與等差數(shù)列前項和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項和公式的靈活應用,如.8、A【解析】

將已知條件轉化為的形式,由此確定數(shù)列為的項.【詳解】由于等差數(shù)列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數(shù)列的基本量計算,屬于基礎題.9、B【解析】

雙曲線的漸近線方程為,由題可知.設點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.10、B【解析】

分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當,不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.11、B【解析】

畫出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點個數(shù),然后轉化求解,即可得出結果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關于的方程的解有兩個或三個(時有三個,時有兩個),所以關于的方程只能有一個根(若有兩個根,則關于的方程有四個或五個根),由,可得的值分別為,則故選B.【點睛】本題考查數(shù)形結合以及函數(shù)與方程的應用,考查轉化思想以及計算能力,屬于常考題型.12、D【解析】

先對圖表數(shù)據(jù)的分析處理,再結簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環(huán)比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數(shù)據(jù)的分析處理能力及進行簡單的合情推理,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

首先根據(jù)的取值范圍,求得的取值范圍,由此求得函數(shù)的值域,結合區(qū)間上的值小于0恒成立列不等式組,解不等式組求得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點睛】本小題主要考查三角函數(shù)值域的求法,考查三角函數(shù)值恒小于零的問題的求解,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.14、【解析】

依題意畫圖,設,根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進而得出點坐標.【詳解】解:依題意畫圖,設以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則,則為點到直線:的距離.所以,則.又因為點在直線:上,設,則.解得,則.故答案為:【點睛】本題考查了直線與圓的位置關系,考查了兩點間的距離公式,點到直線的距離公式,是基礎題.15、【解析】

利用等差數(shù)列的通項公式以及等比中項的性質,化簡求出公差與的關系,然后轉化求解的值.【詳解】設等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列通項公式以及等比中項的應用,考查計算能力,屬于基礎題.16、【解析】

利用等差數(shù)列前項和公式,列出方程組,求出首項和公差的值,利用等差數(shù)列的通項公式可求出數(shù)列的通項公式,可求出的表達式,然后利用雙勾函數(shù)的單調性可求出的最大值.【詳解】(1)設等差數(shù)列的公差為,則,解得,所以,數(shù)列的通項公式為;(2),,令,則且,,由雙勾函數(shù)的單調性可知,函數(shù)在時單調遞減,在時單調遞增,當或時,取得最大值為.故答案為:;.【點睛】本題考查等差數(shù)列的通項公式、前項和的求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】

(1)利用可得的遞推關系,從而可求其通項.(2)由為等比數(shù)列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質可證.【詳解】(1)由題意,得:(t為常數(shù),且),當時,得,得.由,故,,故.(2)由,由為等比數(shù)列可知:,又,故,化簡得到,所以或(舍).所以,,則.設的前n項和為.則,相減可得【點睛】數(shù)列的通項與前項和的關系式,我們常利用這個關系式實現(xiàn)與之間的相互轉化.數(shù)列求和關鍵看通項的結構形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.18、(1);(2)【解析】

(1)將代入可得集合B,解對數(shù)不等式可得集合A,由并集運算即可得解.(2)由可知B為A的子集,即;當符合題意,當B不為空集時,由不等式關系即可求得的取值范圍.【詳解】(1)若,則,依題意,故;(2)因為,故;若,即時,,符合題意;若,即時,,解得;綜上所述,實數(shù)的取值范圍為.【點睛】本題考查了集合的并集運算,由集合的包含關系求參數(shù)的取值范圍,注意討論集合是否為空集的情況,屬于基礎題.19、(Ⅰ);(Ⅱ).【解析】

(I)零點分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當時,化簡得.解得;當時,化簡得.此時無解;當時,化簡得.解得.綜上,原不等式的解集為由題意,設方程兩根為.當時,方程等價于方程.易知當,方程在上有兩個不相等的實數(shù)根.此時方程在上無解.滿足條件.當時,方程等價于方程,此時方程在上顯然沒有兩個不相等的實數(shù)根.當時,易知當,方程在上有且只有一個實數(shù)根.此時方程在上也有一個實數(shù)根.滿足條件.綜上,實數(shù)的取值范圍為.【點睛】本題考查解絕對值不等式以及方程根的個數(shù)求參數(shù)范圍,考查學生的運算能力,是一道中檔題.20、(Ⅰ)證明見解析;(Ⅱ)【解析】

(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標系,平面的法向量,,計算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標系,則,,,,.設平面的法向量,則,即,取得到,,設直線與平面所成角為故.【點睛】本題考查了線面垂直,線面夾角,意在考查學生的空間想象能力和計算能力.21、(1)x22+y2【解析】

(1)根據(jù)橢圓的幾何性質可得到a2,b2;(2)聯(lián)立直線和橢圓,利用弦長公式可求得弦長AB,利用點到直線的距離公式求得原點到直線l的距離,從而可求得三角形面積,再用單調性求最值可得值域.【詳解】(1)因為兩焦點與短軸的一個頂點的連線構成等腰直角三角形,所以a=2又由右準線方程為x=2,得到a2解得a=2,c=1,所以所以,橢圓C的方程為x2(2)①設B(x1,y1∵ON=6因為點B,N都在橢圓上,所以x122+y12所以OB=x②由原點O到直線l的距離為1,得|m|1+k2聯(lián)立直線l的方程與橢圓C的方程:y=kx+mx2設A(x1,y1OA=(1+k2)所以k△OAB的面積S==1因為S=2λ(1-λ)在[并且當λ=45時,S=225所以△OAB的面積S的范圍為[10【點睛】圓錐曲線中最值與范圍問題的常見求法:(1)幾何法:若題目的條件和結論能明顯體現(xiàn)幾何特征和意義,則考慮利用圖形性質來解決;(2)代數(shù)法:若題目的條件和結論能體現(xiàn)一種明確的函數(shù)關系,則可首先建立目標函數(shù),再求這個函數(shù)的最值.在利用代數(shù)法解決最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論