2025屆云南省峨山彝族自治縣峨山一中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第1頁
2025屆云南省峨山彝族自治縣峨山一中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第2頁
2025屆云南省峨山彝族自治縣峨山一中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第3頁
2025屆云南省峨山彝族自治縣峨山一中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第4頁
2025屆云南省峨山彝族自治縣峨山一中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆云南省峨山彝族自治縣峨山一中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的左、右焦點(diǎn)分別為,,P是雙曲線E上的一點(diǎn),且.若直線與雙曲線E的漸近線交于點(diǎn)M,且M為的中點(diǎn),則雙曲線E的漸近線方程為()A. B. C. D.2.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項(xiàng)和,則()A. B. C. D.3.已知隨機(jī)變量滿足,,.若,則()A., B.,C., D.,4.雙曲線:(,)的一個焦點(diǎn)為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.5.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.46.復(fù)數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.7.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.8.若實(shí)數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.29.已知等差數(shù)列的前項(xiàng)和為,,,則()A.25 B.32 C.35 D.4010.若的內(nèi)角滿足,則的值為()A. B. C. D.11.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點(diǎn),有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數(shù)是()A.0 B.1 C.2 D.312.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),在區(qū)間上隨機(jī)取一個數(shù),則使得≥0的概率為.14.已知正方形邊長為,空間中的動點(diǎn)滿足,,則三棱錐體積的最大值是______.15.平面向量,,(R),且與的夾角等于與的夾角,則.16.設(shè),若關(guān)于的方程有實(shí)數(shù)解,則實(shí)數(shù)的取值范圍_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓過定點(diǎn),且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點(diǎn),過分別作的切線,兩切線的交點(diǎn)為,直線與交于兩點(diǎn).(1)證明:點(diǎn)始終在直線上且;(2)求四邊形的面積的最小值.18.(12分)已知橢圓:()的左、右頂點(diǎn)分別為、,焦距為2,點(diǎn)為橢圓上異于、的點(diǎn),且直線和的斜率之積為.(1)求的方程;(2)設(shè)直線與軸的交點(diǎn)為,過坐標(biāo)原點(diǎn)作交橢圓于點(diǎn),試探究是否為定值,若是,求出該定值;若不是,請說明理由.19.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;(2)若直線與曲線、曲線在第一象限交于兩點(diǎn),且,點(diǎn)的坐標(biāo)為,求的面積.20.(12分)[選修4-5:不等式選講]:已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.21.(12分)(某工廠生產(chǎn)零件A,工人甲生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為.己知生產(chǎn)一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據(jù)生產(chǎn)一件零件A給工廠帶來的效益的期望值判斷甲乙技術(shù)的好壞;(2)為鼓勵工人提高技術(shù),工廠進(jìn)行技術(shù)大賽,最后甲乙兩人進(jìn)入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產(chǎn)一件零件A,如果一方生產(chǎn)的零件A品級優(yōu)干另一方生產(chǎn)的零件,則該方得分1分,另一方得分-1分,如果兩人生產(chǎn)的零件A品級一樣,則兩方都不得分,當(dāng)一方總分為4分時,比賽結(jié)束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.22.(10分)已知曲線,直線:(為參數(shù)).(I)寫出曲線的參數(shù)方程,直線的普通方程;(II)過曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn),的最大值與最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點(diǎn)P一定在左支上.由及,得,,再結(jié)合M為的中點(diǎn),得,又因?yàn)镺M是的中位線,又,且,從而直線與雙曲線的左支只有一個交點(diǎn).在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點(diǎn)睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點(diǎn)三角形等知識,是一道中檔題.2、B【解析】

利用等差數(shù)列性質(zhì),若,則求出,再利用等差數(shù)列前項(xiàng)和公式得【詳解】解:因?yàn)椋傻炔顢?shù)列性質(zhì),若,則得,.為數(shù)列的前項(xiàng)和,則.故選:.【點(diǎn)睛】本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項(xiàng)和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項(xiàng)和公式的靈活應(yīng)用,如.3、B【解析】

根據(jù)二項(xiàng)分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)殡S機(jī)變量滿足,,.所以服從二項(xiàng)分布,由二項(xiàng)分布的性質(zhì)可得:,因?yàn)?,所以,由二次函?shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點(diǎn)睛】本題主要考查二項(xiàng)分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.4、A【解析】

根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點(diǎn)到漸近線的距離為,故,故漸近線為.故選:.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.5、D【解析】

圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時取等號,故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.6、C【解析】

直接利用復(fù)數(shù)的除法的運(yùn)算法則化簡求解即可.【詳解】由得:本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的除法的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.7、A【解析】

推導(dǎo)出,分別取的中點(diǎn),連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點(diǎn),連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點(diǎn)睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力.8、C【解析】

作出可行域,直線目標(biāo)函數(shù)對應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當(dāng)過點(diǎn)時,取得最大值1.故選:C.【點(diǎn)睛】本題考查簡單的線性規(guī)劃問題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個封閉圖形.9、C【解析】

設(shè)出等差數(shù)列的首項(xiàng)和公差,即可根據(jù)題意列出兩個方程,求出通項(xiàng)公式,從而求得.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則,解得,∴,即有.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式的求法和應(yīng)用,涉及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于容易題.10、A【解析】

由,得到,得出,再結(jié)合三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內(nèi)角,所以,所以,因?yàn)?,所?故選:A.【點(diǎn)睛】本題主要考查了正弦函數(shù)的性質(zhì),以及三角函數(shù)的基本關(guān)系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計(jì)算能力.11、B【解析】

用空間四邊形對①進(jìn)行判斷;根據(jù)公理2對②進(jìn)行判斷;根據(jù)空間角的定義對③進(jìn)行判斷;根據(jù)空間直線位置關(guān)系對④進(jìn)行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點(diǎn),有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補(bǔ),故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B【點(diǎn)睛】本小題考查空間點(diǎn),線,面的位置關(guān)系及其相關(guān)公理,定理及其推論的理解和認(rèn)識;考查空間想象能力,推理論證能力,考查數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.12、D【解析】

先計(jì)算,然后將進(jìn)行平方,,可得結(jié)果.【詳解】由題意可得:∴∴則.故選:D.【點(diǎn)睛】本題考查的是向量的數(shù)量積的運(yùn)算和模的計(jì)算,屬基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得≥0的概率為考點(diǎn):本小題主要考查與長度有關(guān)的幾何概型的概率計(jì)算.點(diǎn)評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.14、【解析】

以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,設(shè)點(diǎn),根據(jù)題中條件得出,進(jìn)而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,則,,,設(shè)點(diǎn),空間中的動點(diǎn)滿足,,所以,整理得,,當(dāng),時,取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.【點(diǎn)睛】本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.15、2【解析】試題分析:,與的夾角等于與的夾角,所以考點(diǎn):向量的坐標(biāo)運(yùn)算與向量夾角16、【解析】

先求出,從而得函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).即可得的最大值為,令,得函數(shù)取得最小值,由有實(shí)數(shù)解,,進(jìn)而得實(shí)數(shù)的取值范圍.【詳解】解:,當(dāng)時,;當(dāng)時,;函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).所以的最大值為,令,所以當(dāng)時,函數(shù)取得最小值,又因?yàn)榉匠逃袑?shí)數(shù)解,那么,即,所以實(shí)數(shù)的取值范圍是:.故答案為:【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,函數(shù)的最值問題,導(dǎo)數(shù)的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)最小值為1.【解析】

(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此求得點(diǎn)的坐標(biāo).寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達(dá)定理求得點(diǎn)的坐標(biāo),并由此判斷出始終在直線上,且.(2)設(shè)直線的傾斜角為,求得的表達(dá)式,求得的表達(dá)式,由此求得四邊形的面積的表達(dá)式進(jìn)而求得四邊形的面積的最小值.【詳解】(1)∵動圓過定點(diǎn),且與直線相切,∴動圓圓心到定點(diǎn)和定直線的距離相等,∴動圓圓心的軌跡是以為焦點(diǎn)的拋物線,∴軌跡的方程為:,設(shè),∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點(diǎn)始終在直線上且;(2)設(shè)直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當(dāng)且僅當(dāng)或,即時取等號,∴四邊形的面積的最小值為1.【點(diǎn)睛】本小題主要考查動點(diǎn)軌跡方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中四邊形面積的最值的計(jì)算,考查運(yùn)算求解能力,屬于中檔題.18、(1)(2)是定值,且定值為2【解析】

(1)設(shè)出點(diǎn)坐標(biāo)并代入橢圓方程,根據(jù)列方程,求得的值,結(jié)合求得的值,進(jìn)而求得橢圓的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,求得點(diǎn)的橫坐標(biāo),聯(lián)立直線的方程和橢圓方程,求得,由此化簡求得為定值.【詳解】(1)已知點(diǎn)在橢圓:()上,可設(shè),即,又,且,可得橢圓的方程為.(2)設(shè)直線的方程為:,則直線的方程為.聯(lián)立直線與橢圓的方程可得:,由,可得,聯(lián)立直線與橢圓的方程可得:,即,即.即為定值,且定值為2.【點(diǎn)睛】本小題主要考查本小題主要考查橢圓方程的求法,考查橢圓中的定值問題的求解,考查直線和橢圓的位置關(guān)系,考查運(yùn)算求解能力,屬于中檔題.19、(1)的極坐標(biāo)方程為,的直角坐標(biāo)方程為(2)【解析】

(1)先把曲線的參數(shù)方程消參后,轉(zhuǎn)化為普通方程,再利用求得極坐標(biāo)方程.將,化為,再利用求得曲線的普通方程.(2)設(shè)直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因?yàn)?,故,即,?(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點(diǎn)睛】本題考查極坐標(biāo)方程與直角坐標(biāo)方程、參數(shù)方程與普通方程的轉(zhuǎn)化、極坐標(biāo)的幾何意義,還考查推理論證能力以及數(shù)形結(jié)合思想,屬于中檔題.20、(1)(2)【解析】

(1)當(dāng)時,,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當(dāng)時,,原不等式可化為,①當(dāng)時,不等式①可化為,解得,此時;當(dāng)時,不等式①可化為,解得,此時;當(dāng)時,不等式①可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得,,因?yàn)榈淖钚≈禐?,所以,由,得,所以,?dāng)且僅當(dāng),即,時,的最小值為.【點(diǎn)睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.21、(1)乙的技術(shù)更好,見解析(2)①,;②【解析】

(1)列出分布列,求出期望,比較大小即可;(2)①

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論