版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省皖西中學2025屆高三一診考試數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.2.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)3.將函數(shù)的圖象向右平移個周期后,所得圖象關(guān)于軸對稱,則的最小正值是()A. B. C. D.4.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.5.如圖,已知平面,,、是直線上的兩點,、是平面內(nèi)的兩點,且,,,,.是平面上的一動點,且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.6.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.457.已知實數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.118.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.9.已知是虛數(shù)單位,則()A. B. C. D.10.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.11.設(shè)集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知函數(shù),則()A.2 B.3 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)a,b,c滿足,則的最小值是______.14.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.15.若的展開式中各項系數(shù)之和為32,則展開式中x的系數(shù)為_____16.二項式的展開式中項的系數(shù)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.18.(12分)設(shè)的內(nèi)角、、的對邊長分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.19.(12分)如圖,在平行四邊形中,,,現(xiàn)沿對角線將折起,使點A到達點P,點M,N分別在直線,上,且A,B,M,N四點共面.(1)求證:;(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.20.(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設(shè)甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,,且這六名同學答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數(shù)學期望.21.(12分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若存在實數(shù),使得不等式成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵;幾何體是直三棱柱消去一個三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.2、C【解析】
先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.3、D【解析】
由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導(dǎo)公式得到關(guān)于的方程,對賦值即可求解.【詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個周期后的解析式為,因為函數(shù)的圖象關(guān)于軸對稱,所以,即,所以當時,有最小正值為.故選:D【點睛】本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導(dǎo)公式及正余弦函數(shù)的性質(zhì);熟練掌握誘導(dǎo)公式和正余弦函數(shù)的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.4、A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A【點睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.5、B【解析】
為所求的二面角的平面角,由得出,求出在內(nèi)的軌跡,根據(jù)軌跡的特點求出的最大值對應(yīng)的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內(nèi),以為軸,以的中垂線為軸建立平面直角坐標系則,設(shè),整理可得:在內(nèi)的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當與圓相切時,最大,取得最小值此時故選【點睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結(jié)果.6、B【解析】
計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.7、A【解析】
根據(jù)約束條件畫出可行域,再將目標函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項【點睛】本題考查線性規(guī)劃求一次相加的目標函數(shù),屬于常規(guī)題型,是簡單題.8、D【解析】
與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大?。驹斀狻浚?,又,∴,即,∴.故選:D.【點睛】本題考查冪和對數(shù)的大小比較,解題時能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.9、B【解析】
根據(jù)復(fù)數(shù)的乘法運算法則,直接計算,即可得出結(jié)果.【詳解】.故選B【點睛】本題主要考查復(fù)數(shù)的乘法,熟記運算法則即可,屬于基礎(chǔ)題型.10、B【解析】
根據(jù)所給不等式組,畫出不等式表示的可行域,將目標函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當經(jīng)過原點時截距最小,;當經(jīng)過時,截距最大值,,所以線性目標函數(shù)的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應(yīng)用,線性目標函數(shù)取值范圍的求法,屬于基礎(chǔ)題.11、C【解析】
作出韋恩圖,數(shù)形結(jié)合,即可得出結(jié)論.【詳解】如圖所示,,同時.故選:C.【點睛】本題考查集合關(guān)系及充要條件,注意數(shù)形結(jié)合方法的應(yīng)用,屬于基礎(chǔ)題.12、A【解析】
根據(jù)分段函數(shù)直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數(shù)計算,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先分離出,應(yīng)用基本不等式轉(zhuǎn)化為關(guān)于c的二次函數(shù),進而求出最小值.【詳解】解:若取最小值,則異號,,根據(jù)題意得:,又由,即有,則,即的最小值為,故答案為:【點睛】本題考查了基本不等式以及二次函數(shù)配方求最值,屬于中檔題.14、【解析】
由,求出長度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應(yīng)用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.15、2025【解析】
利用賦值法,結(jié)合展開式中各項系數(shù)之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數(shù)為.故答案為:2025【點睛】本小題主要考查二項式展開式各項系數(shù)之和,考查二項式展開式指定項系數(shù)的求法,屬于基礎(chǔ)題.16、15【解析】
由題得,,令,解得,代入可得展開式中含x6項的系數(shù).【詳解】由題得,,令,解得,所以二項式的展開式中項的系數(shù)為.故答案為:15【點睛】本題主要考查了二項式定理的應(yīng)用,考查了利用通項公式去求展開式中某項的系數(shù)問題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)通過正弦定理和內(nèi)角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達式后即可求出b的值.【詳解】(1)由三角形內(nèi)角和定理及誘導(dǎo)公式,得,結(jié)合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設(shè),得,從而,由余弦定理,得,即,又,所以,解得.【點睛】本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎(chǔ)題.18、(1);(2).【解析】
(1)根據(jù)條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數(shù)值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當且僅當時取最大值.故的最大值為.【點睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應(yīng)用,以及利用三角恒等變換求函數(shù)的最值,意在考查學生的轉(zhuǎn)化能力和數(shù)學運算能力,屬于基礎(chǔ)題19、(1)證明見解析;(2)【解析】
(1)根據(jù)余弦定理,可得,利用//,可得//平面,然后利用線面平行的性質(zhì)定理,//,最后可得結(jié)果.(2)根據(jù)二面角平面角大小為,可知N為的中點,然后利用建系,計算以及平面的一個法向量,利用向量的夾角公式,可得結(jié)果.【詳解】(1)不妨設(shè),則,在中,,則,因為,所以,因為//,且A、B、M、N四點共面,所以//平面.又平面平面,所以//.而,.(2)因為平面平面,且,所以平面,,因為,所以平面,,因為,平面與平面夾角為,所以,在中,易知N為的中點,如圖,建立空間直角坐標系,則,,,,,,,,設(shè)平面的一個法向量為,則由,令,得.設(shè)與平面所成角為,則.【點睛】本題考查線面平行的性質(zhì)定理以及線面角,熟練掌握利用建系的方法解決幾何問題,將幾何問題代數(shù)化,化繁為簡,屬中檔題.20、(1)(2)分布列見解析,期望為20【解析】
利用相互獨立事件概率公式求解即可;由題意知,隨機變量可能的取值為0,10,20,30,分別求出對應(yīng)的概率,列出分布列并代入數(shù)學期望公式求解即可.【詳解】(1)由相互獨立事件概率公式可得,(2)由題意知,隨機變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數(shù)學期望.【點睛】本題考查相互獨立事件概率公式和離散型隨機變量的分布列及其數(shù)學期望;考查運算求解能力;確定隨機變量可能的取值,求出對應(yīng)的概率是求解本題的關(guān)鍵;屬于中檔題、常考題型.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)條件由正弦定理得,又c=2a,所以,由余弦定理算出,進而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【點睛】本題主要考查了正余弦定理的應(yīng)用,運用二倍角公式和兩角和的正弦公式求值,考查了學生的運算求解能力.22、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《酒店消防培訓(xùn)》課件2
- 孕期肛門墜脹的健康宣教
- 鼻惡性肉芽腫的健康宣教
- 《計算機輔助制》課件
- 白塞氏病的健康宣教
- 睡眠呼吸暫停綜合征的健康宣教
- 孕期室性早搏的健康宣教
- 激素依賴性皮炎的臨床護理
- 妊娠合并淋巴瘤的健康宣教
- 急性喉氣管炎的健康宣教
- 醫(yī)保補辦委托書
- 魯教版九年級英語全一冊 unit9學案
- (2024年)大學生就業(yè)指導(dǎo)
- 空調(diào)線路改造施工組織方案
- 大學生流量卡創(chuàng)業(yè)計劃書
- MEMS工藝(9腐蝕技術(shù))
- 應(yīng)急救災(zāi)物資采購?fù)稑朔桨福夹g(shù)方案)
- 2023年高考物理十年高考物理12拋體運動一解析
- 2024年第九屆全國大學生預(yù)防艾滋病知識競賽考試題庫(附答案)
- 企業(yè)食堂員工年終工作總結(jié)
- 蘇州出租車從業(yè)資格證題庫
評論
0/150
提交評論