版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆江蘇省南京市玄武區(qū)高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個(gè)結(jié)論:①曲線有四條對(duì)稱軸;②曲線上的點(diǎn)到原點(diǎn)的最大距離為;③曲線第一象限上任意一點(diǎn)作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結(jié)論的序號(hào)是()A.①② B.①③ C.①③④ D.①②④2.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個(gè)數(shù)填入方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形數(shù)陣就叫階幻方.定義為階幻方對(duì)角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.50503.已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于點(diǎn)、,O為坐標(biāo)原點(diǎn).若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.34.已知等式成立,則()A.0 B.5 C.7 D.135.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.6.已知集合,,則A. B.C. D.7.已知正四面體的內(nèi)切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.278.1777年,法國科學(xué)家蒲豐在宴請(qǐng)客人時(shí),在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個(gè)客人發(fā)許多等質(zhì)量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對(duì)針落地的位置進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計(jì)數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.9.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.10.設(shè),分別是橢圓的左、右焦點(diǎn),過的直線交橢圓于,兩點(diǎn),且,,則橢圓的離心率為()A. B. C. D.11.已知定義在上的函數(shù)滿足,且當(dāng)時(shí),.設(shè)在上的最大值為(),且數(shù)列的前項(xiàng)的和為.若對(duì)于任意正整數(shù)不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.12.用一個(gè)平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列的各項(xiàng)均為正數(shù),,則的值為________.14.設(shè),分別是橢圓C:()的左、右焦點(diǎn),直線l過交橢圓C于A,B兩點(diǎn),交y軸于E點(diǎn),若滿足,且,則橢圓C的離心率為______.15.三棱錐中,點(diǎn)是斜邊上一點(diǎn).給出下列四個(gè)命題:①若平面,則三棱錐的四個(gè)面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內(nèi)心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號(hào)是__________.(把你認(rèn)為正確命題的序號(hào)都填上)16.展開式中的系數(shù)的和大于8而小于32,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若存在,使得成立,求實(shí)數(shù)的最小值18.(12分)已知函數(shù),.(1)若函數(shù)在上單調(diào)遞減,且函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)求證:(,且).19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)把的參數(shù)方程化為極坐標(biāo)方程:(2)求與交點(diǎn)的極坐標(biāo).20.(12分)某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x與燒開一壺水所用時(shí)間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).表中,.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)若旋轉(zhuǎn)的弧度數(shù)x與單位時(shí)間內(nèi)煤氣輸出量t成正比,那么x為多少時(shí),燒開一壺水最省煤氣?附:對(duì)于一組數(shù)據(jù),,,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.21.(12分)已知函數(shù)(1)若,不等式的解集;(2)若,求實(shí)數(shù)的取值范圍.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,且為正三角形.(1)求點(diǎn),的極坐標(biāo);(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
①利用之間的代換判斷出對(duì)稱軸的條數(shù);②利用基本不等式求解出到原點(diǎn)的距離最大值;③將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對(duì)應(yīng)圓的關(guān)系,從而判斷出面積是否小于.【詳解】①:當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;綜上可知:有四條對(duì)稱軸,故正確;②:因?yàn)椋?,所以,所以,取等?hào)時(shí),所以最大距離為,故錯(cuò)誤;③:設(shè)任意一點(diǎn),所以圍成的矩形面積為,因?yàn)?,所以,所以,取等?hào)時(shí),所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內(nèi)部,因?yàn)閳A的面積為:,所以四葉草的面積小于,故正確.故選:C.【點(diǎn)睛】本題考查曲線與方程的綜合運(yùn)用,其中涉及到曲線的對(duì)稱性分析以及基本不等式的運(yùn)用,難度較難.分析方程所表示曲線的對(duì)稱性,可通過替換方程中去分析證明.2、C【解析】
因?yàn)榛梅降拿啃?、每列、每條對(duì)角線上的數(shù)的和相等,可得,即得解.【詳解】因?yàn)榛梅降拿啃小⒚苛?、每條對(duì)角線上的數(shù)的和相等,所以階幻方對(duì)角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點(diǎn)睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3、C【解析】試題分析:拋物線的準(zhǔn)線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點(diǎn),,,則;選C考點(diǎn):1.雙曲線的漸近線和離心率;2.拋物線的準(zhǔn)線方程;4、D【解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進(jìn)行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了特殊值代入法,考查了數(shù)學(xué)運(yùn)算能力.5、C【解析】
由程序語言依次計(jì)算,直到時(shí)輸出即可【詳解】程序的運(yùn)行過程為當(dāng)n=2時(shí),時(shí),,此時(shí)輸出.故選:C【點(diǎn)睛】本題考查由程序框圖計(jì)算輸出結(jié)果,屬于基礎(chǔ)題6、D【解析】
因?yàn)椋?,所以,,故選D.7、D【解析】
設(shè)正四面體的棱長為,取的中點(diǎn)為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長為,取的中點(diǎn)為,連接,作正四面體的高為,則,,,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點(diǎn)睛】本題主要考查了多面體的內(nèi)切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.8、D【解析】
根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出頻率,用以估計(jì)概率.【詳解】.故選:D.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計(jì)概率,屬于基礎(chǔ)題.9、A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點(diǎn)求出,化簡(jiǎn)即得所求.【詳解】由圖像知,,,解得,因?yàn)楹瘮?shù)過點(diǎn),所以,,即,解得,因?yàn)椋裕?故選:A【點(diǎn)睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.10、C【解析】
根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項(xiàng).【點(diǎn)睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個(gè)常用方法,通過幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.11、C【解析】
由已知先求出,即,進(jìn)一步可得,再將所求問題轉(zhuǎn)化為對(duì)于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值即可.【詳解】當(dāng)時(shí),則,,所以,,顯然當(dāng)時(shí),,故,,若對(duì)于任意正整數(shù)不等式恒成立,即對(duì)于任意正整數(shù)恒成立,即對(duì)于任意正整數(shù)恒成立,設(shè),,令,解得,令,解得,考慮到,故有當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.【點(diǎn)睛】本題考查數(shù)列中的不等式恒成立問題,涉及到求函數(shù)解析、等比數(shù)列前n項(xiàng)和、數(shù)列單調(diào)性的判斷等知識(shí),是一道較為綜合的數(shù)列題.12、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點(diǎn):平面的基本性質(zhì)及推論.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
運(yùn)用等比數(shù)列的通項(xiàng)公式,即可解得.【詳解】解:,,,,,,,,,,,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式及應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.14、【解析】
采用數(shù)形結(jié)合,計(jì)算以及,然后根據(jù)橢圓的定義可得,并使用余弦定理以及,可得結(jié)果.【詳解】如圖由,所以由,所以又,則所以所以化簡(jiǎn)可得:則故答案為:【點(diǎn)睛】本題考查橢圓的定義以及余弦定理的使用,關(guān)鍵在于根據(jù)角度求出線段的長度,考查分析能力以及計(jì)算能力,屬中檔題.15、①②③【解析】
對(duì)①,由線面平行的性質(zhì)可判斷正確;對(duì)②,三棱錐外接球可看作正方體的外接球,結(jié)合外接球半徑公式即可求解;對(duì)③,結(jié)合題意作出圖形,由勾股定理和內(nèi)接圓對(duì)應(yīng)面積公式求出錐體的高,則可求解;對(duì)④,由動(dòng)點(diǎn)分析可知,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線與平面所成的角最大,結(jié)合幾何關(guān)系可判斷錯(cuò)誤;【詳解】對(duì)于①,因?yàn)槠矫?,所以,,,又,所以平面,所以,故四個(gè)面都是直角三角形,∴①正確;對(duì)于②,若,,,平面,∴三棱錐的外接球可以看作棱長為4的正方體的外接球,∴,,∴體積為,∴②正確;對(duì)于③,設(shè)內(nèi)心是,則平面,連接,則有,又內(nèi)切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對(duì)于④,∵若,平面,則直線與平面所成的角最大時(shí),點(diǎn)與點(diǎn)重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點(diǎn)睛】本題考查立體幾何基本關(guān)系的應(yīng)用,線面垂直的性質(zhì)及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題16、4【解析】
由題意可得項(xiàng)的系數(shù)與二項(xiàng)式系數(shù)是相等的,利用題意,得出不等式組,求得結(jié)果.【詳解】觀察式子可知,,故答案為:4.【點(diǎn)睛】該題考查的是有關(guān)二項(xiàng)式定理的問題,涉及到的知識(shí)點(diǎn)有展開式中項(xiàng)的系數(shù)和,屬于基礎(chǔ)題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由得,兩式相減可得是從第二項(xiàng)開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當(dāng)時(shí),,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因?yàn)?,,兩式相減得:,即,是從第二項(xiàng)開始的等比數(shù)列,∵∴,則,;(2),當(dāng)時(shí),;當(dāng)時(shí),設(shè)遞增,,所以實(shí)數(shù)的最小值.【點(diǎn)睛】本題主要考查地推數(shù)列的應(yīng)用,屬于中檔題.18、(1)1;(2)見解析【解析】
(1)分別求得與的導(dǎo)函數(shù),由導(dǎo)函數(shù)與單調(diào)性關(guān)系即可求得的值;(2)由(1)可知當(dāng)時(shí),,當(dāng)時(shí),,因而,構(gòu)造,由對(duì)數(shù)運(yùn)算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數(shù)在上單調(diào)遞減,∴,即在上恒成立,∴,又∵函數(shù)在上單調(diào)遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當(dāng)時(shí),函數(shù)在上為減函數(shù),在上為增函數(shù),而,∴當(dāng)時(shí),,當(dāng)時(shí),.∴∴即,∴.【點(diǎn)睛】本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系,放縮法在證明不等式中的應(yīng)用,屬于難題.19、(1)(2)與交點(diǎn)的極坐標(biāo)為,和【解析】
(1)先把曲線化成直角坐標(biāo)方程,再化簡(jiǎn)成極坐標(biāo)方程;(2)聯(lián)立曲線和曲線的方程解得即可.【詳解】(1)曲線的直角坐標(biāo)方程為:,即.的參數(shù)方程化為極坐標(biāo)方程為;(2)聯(lián)立可得:,與交點(diǎn)的極坐標(biāo)為,和.【點(diǎn)睛】本題考查了參數(shù)方程,直角坐標(biāo)方程,極坐標(biāo)方程的互化,也考查了極坐標(biāo)方程的聯(lián)立,屬于基礎(chǔ)題.20、(1)更適宜(2)(3)x為2時(shí),燒開一壺水最省煤氣【解析】
(1)根據(jù)散點(diǎn)圖是否按直線型分布作答;(2)根據(jù)回歸系數(shù)公式得出y關(guān)于的線性回歸方程,再得出y關(guān)于x的回歸方程;(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.【詳解】(1)更適宜作燒水時(shí)間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型.(2)由公式可得:,,所以所求回歸方程為.(3)設(shè),則煤氣用量,當(dāng)且僅當(dāng)時(shí)取“”,即時(shí),煤
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《保險(xiǎn)金融行業(yè)模板》課件
- 《認(rèn)識(shí)計(jì)算機(jī)軟》課件
- 干酪性鼻炎的健康宣教
- 創(chuàng)傷性肩關(guān)節(jié)前脫位的健康宣教
- 《Java程序設(shè)計(jì)及移動(dòng)APP開發(fā)》課件-第04章
- 陰吹的健康宣教
- 刺胞皮炎的臨床護(hù)理
- 糖代謝紊亂的臨床護(hù)理
- 孕期牙齒松動(dòng)的健康宣教
- 汗腺瘤的臨床護(hù)理
- 2024春國開電商數(shù)據(jù)分析形考任務(wù)答案
- 學(xué)校結(jié)核病防治制度及流程
- 行政職業(yè)能力測(cè)試題庫言語理解與表達(dá)習(xí)題完美版
- 食品機(jī)械與設(shè)備智慧樹知到期末考試答案章節(jié)答案2024年西北農(nóng)林科技大學(xué)
- 統(tǒng)編版語文三年級(jí)下冊(cè)快樂讀書吧《中國古代寓言故事》導(dǎo)讀課 教學(xué)設(shè)計(jì)
- 在線網(wǎng)課學(xué)習(xí)知道《新聞攝影基礎(chǔ)(西南政法大學(xué))》單元測(cè)試考核答案
- 培養(yǎng)幼兒的表達(dá)效果和語言表述能力
- 鉗工實(shí)訓(xùn)課教學(xué)設(shè)計(jì)案例
- 電子商務(wù)實(shí)訓(xùn)室建設(shè)方案
- 統(tǒng)部編版語文六年級(jí)上學(xué)期期末真題模擬試卷(含答案解析)
- 《平行四邊形的面積例1》(教案)五年級(jí)上冊(cè)數(shù)學(xué)人教版
評(píng)論
0/150
提交評(píng)論