




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省南京市第29中2025屆高三第一次調(diào)研測試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),其中a,b是實數(shù),則()A.1 B.2 C. D.2.的展開式中含的項的系數(shù)為()A. B.60 C.70 D.803.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.4.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.5.設(shè)等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.126.在中,,,,則邊上的高為()A. B.2 C. D.7.已知實數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]8.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.9.若關(guān)于的不等式有正整數(shù)解,則實數(shù)的最小值為()A. B. C. D.10.已知復(fù)數(shù)滿足,且,則()A.3 B. C. D.11.已知向量,且,則等于()A.4 B.3 C.2 D.112.若,,,點C在AB上,且,設(shè),則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某種圓柱形的如罐的容積為個立方單位,當(dāng)它的底面半徑和高的比值為______.時,可使得所用材料最省.14.已知多項式的各項系數(shù)之和為32,則展開式中含項的系數(shù)為______.15.如圖是一個幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.16.不等式對于定義域內(nèi)的任意恒成立,則的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,拋物線C:,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為().(1)求拋物線C的極坐標(biāo)方程;(2)若拋物線C與直線l交于A,B兩點,求的值.18.(12分)已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函數(shù)h(x)的單調(diào)區(qū)間;(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個極值點x1,x2,且滿足1e(e為自然對數(shù)的底數(shù))求x1?x2的最大值.19.(12分)已知橢圓,上頂點為,離心率為,直線交軸于點,交橢圓于,兩點,直線,分別交軸于點,.(Ⅰ)求橢圓的方程;(Ⅱ)求證:為定值.20.(12分)已知兩數(shù).(1)當(dāng)時,求函數(shù)的極值點;(2)當(dāng)時,若恒成立,求的最大值.21.(12分)試求曲線y=sinx在矩陣MN變換下的函數(shù)解析式,其中M,N.22.(10分)已知.(1)求的單調(diào)區(qū)間;(2)當(dāng)時,求證:對于,恒成立;(3)若存在,使得當(dāng)時,恒有成立,試求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復(fù)數(shù)模的計算,考驗計算,屬基礎(chǔ)題.2、B【解析】
展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,由二項式的通項,可得解【詳解】由題意,展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,所以的展開式中含的項的系數(shù)為.故選:B【點睛】本題考查了二項式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.3、B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計算能力,屬于中檔題4、B【解析】
根據(jù)已知證明平面,只要設(shè),則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設(shè),則,所以,所以.又因為,當(dāng)且僅當(dāng),即時等號成立,所以.故選:B.【點睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設(shè)出底面三角形一邊長為,用建立體積與邊長的函數(shù)關(guān)系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值.5、A【解析】
由題意知成等差數(shù)列,結(jié)合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計算量大大減少.6、C【解析】
結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.7、B【解析】
作出可行域,表示可行域內(nèi)點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點睛】本題考查簡單的非線性規(guī)劃.解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關(guān)系可得結(jié)論.8、A【解析】
函數(shù)的零點就是方程的解,設(shè),方程可化為,即或,求出的導(dǎo)數(shù),利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉(zhuǎn)化為,即,所以或.因為,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復(fù)合函數(shù)的零點.考查轉(zhuǎn)化與化歸思想,函數(shù)零點轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學(xué)生分析問題解決問題的能力.9、A【解析】
根據(jù)題意可將轉(zhuǎn)化為,令,利用導(dǎo)數(shù),判斷其單調(diào)性即可得到實數(shù)的最小值.【詳解】因為不等式有正整數(shù)解,所以,于是轉(zhuǎn)化為,顯然不是不等式的解,當(dāng)時,,所以可變形為.令,則,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,所以當(dāng)時,,故,解得.故選:A.【點睛】本題主要考查不等式能成立問題的解法,涉及到對數(shù)函數(shù)的單調(diào)性的應(yīng)用,構(gòu)造函數(shù)法的應(yīng)用,導(dǎo)數(shù)的應(yīng)用等,意在考查學(xué)生的轉(zhuǎn)化能力,屬于中檔題.10、C【解析】
設(shè),則,利用和求得,即可.【詳解】設(shè),則,因為,則,所以,又,即,所以,所以,故選:C【點睛】本題考查復(fù)數(shù)的乘法法則的應(yīng)用,考查共軛復(fù)數(shù)的應(yīng)用.11、D【解析】
由已知結(jié)合向量垂直的坐標(biāo)表示即可求解.【詳解】因為,且,,則.故選:.【點睛】本題主要考查了向量垂直的坐標(biāo)表示,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.12、B【解析】
利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識的綜合應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)圓柱的高為,底面半徑為,根據(jù)容積為個立方單位可得,再列出該圓柱的表面積,利用導(dǎo)數(shù)求出最值,從而進(jìn)一步得到圓柱的底面半徑和高的比值.【詳解】設(shè)圓柱的高為,底面半徑為.∵該圓柱形的如罐的容積為個立方單位∴,即.∴該圓柱形的表面積為.令,則.令,得;令,得.∴在上單調(diào)遞減,在上單調(diào)遞增.∴當(dāng)時,取得最小值,即材料最省,此時.故答案為:.【點睛】本題考查函數(shù)的應(yīng)用,解答本題的關(guān)鍵是寫出表面積的表示式,再利用導(dǎo)數(shù)求函數(shù)的最值,屬中檔題.14、【解析】
令可得各項系數(shù)和為,得出,根據(jù)第一個因式展開式的常數(shù)項與第二個因式的展開式含一次項的積與第一個因式展開式含x的一次項與第二個因式常數(shù)項的積的和即為展開式中含項,可得解.【詳解】令,則得,解得,所以展開式中含項為:,故答案為:【點睛】本題主要考查了二項展開式的系數(shù)和,二項展開式特定項,賦值法,屬于中檔題.15、;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個側(cè)面都是直角三角形,所以計算出邊長,表面積是考點:1.三視圖;2.幾何體的表面積.16、【解析】
根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內(nèi)的任意恒成立,即對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當(dāng)時取等號,由可知,,當(dāng)時取等號,,當(dāng)有解時,令,則,在上單調(diào)遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,,即可求得結(jié)果.(2)由的幾何意義得,.將代入拋物線C的方程,利用韋達(dá)定理,,即可求得結(jié)果.【詳解】(1)因為,,代入得,所以拋物線C的極坐標(biāo)方程為.(2)將代入拋物線C的方程得,所以,,所以,由的幾何意義得,.【點睛】本題考查直角坐標(biāo)和極坐標(biāo)的轉(zhuǎn)化,考查極坐標(biāo)方程的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運算的能力,難度一般.18、(1)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+∞)(2)【解析】
(1)化簡函數(shù)h(x),求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出(2)函數(shù)f(x)恰有兩個極值點x1,x2,則f′(x)=lnx﹣mx=0有兩個正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消參數(shù)m化簡整理可得ln(x1x2)=ln?,設(shè)t,構(gòu)造函數(shù)g(t)=()lnt,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值即可求出x1?x2的最大值.【詳解】(1)令m=2,函數(shù)h(x),∴h′(x),令h′(x)=0,解得x=e,∴當(dāng)x∈(0,e)時,h′(x)>0,當(dāng)x∈(e,+∞)時,h′(x)<0,∴函數(shù)h(x)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+∞)(2)f(x)=u(x)﹣v(x)=xlnxx+1,∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,∵函數(shù)f(x)恰有兩個極值點x1,x2,∴f′(x)=lnx﹣mx=0有兩個不等正根,∴l(xiāng)nx1﹣mx1=0,lnx2﹣mx2=0,兩式相減可得lnx2﹣lnx1=m(x2﹣x1),兩式相加可得m(x2+x1)=lnx2+lnx1,∴∴l(xiāng)n(x1x2)=ln?,設(shè)t,∵1e,∴1<t≤e,設(shè)g(t)=()lnt,∴g′(t),令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,∴p(t)在(1,e]單調(diào)遞增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,∴φ(t)在(1,e]單調(diào)遞增,∴g′(t)=φ(t)>φ(1)=1﹣1﹣2ln1=0,∴g(t)在(1,e]單調(diào)遞增,∴g(t)max=g(e),∴l(xiāng)n(x1x2),∴x1x2故x1?x2的最大值為.【點睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的最值和最值,考查了函數(shù)與方程的思想,轉(zhuǎn)化與化歸思想,屬于難題19、(Ⅰ);(Ⅱ),證明見解析.【解析】
(Ⅰ)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的方程;(Ⅱ)設(shè)點,,點,,易求直線的方程為:,令得,,同理可得,所以,聯(lián)立直線與橢圓方程,利用韋達(dá)定理代入上式,化簡即可得到.【詳解】(Ⅰ)解:由題意可知:,解得,橢圓的方程為:;(Ⅱ)證:設(shè)點,,點,,聯(lián)立方程,消去得:,,①,點,,,直線的方程為:,令得,,,,同理可得,,,把①式代入上式得:,為定值.【點睛】本題主要考查直線與橢圓的位置關(guān)系、定值問題的求解;關(guān)鍵是能夠通過直線與橢圓聯(lián)立得到韋達(dá)定理的形式,利用韋達(dá)定理化簡三角形面積得到定值;考查計算能力與推理能力,屬于中檔題.20、(1)唯一的極大值點1,無極小值點.(2)1【解析】
(1)求出導(dǎo)函數(shù),求得的解,確定此解兩側(cè)導(dǎo)數(shù)值的正負(fù),確定極值點;(2)問題可變形為恒成立,由導(dǎo)數(shù)求出函數(shù)的最小值,時,無最小值,因此只有,從而得出的不等關(guān)系,得出所求最大值.【詳解】解:(1)定義域為,當(dāng)時,,令得,當(dāng)所以在上單調(diào)遞增,在上單調(diào)遞減,所以有唯一的極大值點,無極小值點.(2)當(dāng)時,.若恒成立,則恒成立,所以恒成立,令,則,由題意,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以所以,所以,故的最大值為1.【點睛】本題考查用導(dǎo)數(shù)求函數(shù)極值,研究不等式恒成立問題.在求極值時,由確定的不一定是極值點,還需滿足在兩側(cè)的符號相反.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版三年級音樂上冊(五線譜)第2單元《唱歌 老爺爺趕鵝》教學(xué)設(shè)計
- 小學(xué)快樂讀書吧:漫步世界名著花園教案
- 行車安全操作規(guī)程
- 白酒的市場營銷方案
- 規(guī)范化大病歷書寫制度
- Review Module Unit 2(教學(xué)設(shè)計)-2024-2025學(xué)年外研版(一起)英語一年級上冊
- 人教版七年級上冊第四單元 神州音韻(一)唱歌 黃河船夫曲教案設(shè)計
- 金融資產(chǎn)投資公司股權(quán)投資試點方案優(yōu)化與實施路徑
- 服務(wù)消費券發(fā)放新政助力經(jīng)濟復(fù)蘇
- 培育卓越班組 筑牢安全基石 -東易公司班組建設(shè)側(cè)記
- 2025-2030中國內(nèi)聯(lián)pH傳感器行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 創(chuàng)傷現(xiàn)場急救課件
- 2025年云南德宏州宏康投資開發(fā)有限公司招聘筆試參考題庫含答案解析
- 勞動與烹飪課件
- 高血壓、2型糖尿病、高脂血癥、肥胖癥膳食運動指導(dǎo)要點基層醫(yī)務(wù)人員應(yīng)用實操手冊
- 2025屆河北省邢臺市名校協(xié)作高三下學(xué)期一模英語試題(含答案)
- 2024內(nèi)蒙古能源集團校園招聘394人筆試參考題庫附帶答案詳解
- 交通設(shè)計(Traffic Design)知到智慧樹章節(jié)測試課后答案2024年秋同濟大學(xué)
- 網(wǎng)絡(luò)安全和保密意識教育
- 2024年畢節(jié)市金沙縣全縣考調(diào)機關(guān)單位事業(yè)單位人員考試真題
- 水利系統(tǒng)職稱考試水利專業(yè)技術(shù)人員職稱考試題(附答案)
評論
0/150
提交評論