




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題04一次函數(shù)(易錯(cuò)必刷40題10種題型專項(xiàng)訓(xùn)練)函數(shù)關(guān)系式函數(shù)自變量的取值范圍函數(shù)的圖象一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征一次函數(shù)圖象與幾何變換一次函數(shù)的應(yīng)用一次函數(shù)的圖象一次函數(shù)的性質(zhì)一次函數(shù)綜合題坐標(biāo)與圖形變化-平移一.函數(shù)關(guān)系式(共2小題)1.某鏈條每節(jié)長(zhǎng)為3.5cm,每?jī)晒?jié)鏈條相連部分重疊的圓的直徑為1.1cm,按照這種連接方式,x節(jié)鏈條總長(zhǎng)度為ycm,則y與x的關(guān)系式是()A.y=3.5x B.y=2.4x C.y=2.4x+1.1 D.y=3.5x﹣1.12.如圖,在矩形中截取兩個(gè)相同的圓作為圓柱的上、下底面,剩余的矩形作為圓柱的側(cè)面,剛好能組合成圓柱.設(shè)矩形的長(zhǎng)和寬分別為y和x,求y關(guān)于x的函數(shù)解析式.二.函數(shù)自變量的取值范圍(共1小題)3.函數(shù)y=中,自變量x的取值范圍是()A.x≥1 B.x>1 C.x≥1且x≠2 D.x≠2三.函數(shù)的圖象(共5小題)4.新龜兔賽跑的故事:龜兔從同一地點(diǎn)同時(shí)出發(fā)后,兔子很快把烏龜遠(yuǎn)遠(yuǎn)甩在后頭.驕傲自滿的兔子覺(jué)得自己遙遙領(lǐng)先,就躺在路邊呼呼大睡起來(lái).當(dāng)它一覺(jué)醒來(lái),發(fā)現(xiàn)烏龜已經(jīng)超過(guò)它,于是奮力直追,最后同時(shí)到達(dá)終點(diǎn).用S1、S2分別表示烏龜和兔子賽跑的路程,t為賽跑時(shí)間,則下列圖象中與故事情節(jié)相吻合的是()A.B. C.D.5.甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時(shí)出發(fā),勻速行駛,各自到達(dá)終點(diǎn)后停止,設(shè)甲乙兩人間距離為s(單位:千米),甲行駛的時(shí)間為(單位:小時(shí)),s與t之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:①出發(fā)1小時(shí)時(shí),甲、乙在途中相遇;②乙開車速度是80千米/小時(shí);③出發(fā)1.5小時(shí)時(shí),乙比甲多行駛了60千米;④出發(fā)3小時(shí)時(shí),甲乙同時(shí)到達(dá)終點(diǎn);其中正確結(jié)論的個(gè)數(shù)是()A.1 B.2 C.3 D.46.勻速地向一個(gè)容器注水,最后把容器注滿.在注水的過(guò)程中,水面高度h隨時(shí)間t的變化規(guī)律如圖所示(圖中OEFG為一折線),那么這個(gè)容器的形狀可能是下列圖中的()A. B. C. D.7.將一圓柱形小水杯固定在大圓柱形容器底面中央,小水杯中有部分水,現(xiàn)用一個(gè)注水管沿大容器內(nèi)壁勻速注水,如圖所示,則小水杯水面的高度h(cm)與注水時(shí)間t(min)的函數(shù)圖象大致是()A.B. C.D.8.如圖,邊長(zhǎng)分別為1和2的兩個(gè)正方形,其中有一條邊在同一水平線上,小正方形沿該水平線自左向右勻速穿過(guò)大正方形,設(shè)穿過(guò)的時(shí)間為t,大正方形的面積為S1,小正方形與大正方形重疊部分的面積為S2,若S=S1﹣S2,則S隨t變化的函數(shù)圖象大致為()A.B. C.D.四.一次函數(shù)的圖象(共1小題)9.已知一次函數(shù)y=kx+b,函數(shù)值y隨自變量x的增大而減小,且kb<0,則函數(shù)y=kx+b的圖象大致是()A.B.C.D.五.一次函數(shù)的性質(zhì)(共1小題)10.已知一次函數(shù)y=kx+b的圖象如圖所示,當(dāng)0<y<3時(shí),x的取值范圍是()A.﹣2<x<0 B.﹣2<x<2 C.x>﹣2 D.x≤0六.一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征(共3小題)11.已知點(diǎn)(﹣4,y1),(2,y2)都在直線y=﹣x+2上,則y1,y2大小關(guān)系是()A.y1>y2 B.y1=y(tǒng)2 C.y1<y2 D.不能比較12.若直線y=3x+b與兩坐標(biāo)軸所圍成的三角形的面積是6個(gè)單位,則b的值是.13.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=﹣|x|+3的圖象與性質(zhì)進(jìn)行了探究.下面是小明的探究過(guò)程,請(qǐng)你解決相關(guān)問(wèn)題.(1)如表y與x的幾組對(duì)應(yīng)值:x…﹣4﹣3﹣2﹣101234…y…﹣1012321a﹣1…①a=;②若A(b,﹣7)為該函數(shù)圖象上的點(diǎn),則b=;(2)如圖,在平面直角坐標(biāo)系中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;①該函數(shù)有(填“最大值”或“最小值”);并寫出這個(gè)值為;②求出函數(shù)圖象與坐標(biāo)軸在第二象限內(nèi)所圍成的圖形的面積.七.一次函數(shù)圖象與幾何變換(共2小題)14.如圖,將八個(gè)邊長(zhǎng)為1的小正方形擺放在平面直角坐標(biāo)系中,若過(guò)原點(diǎn)的直線l將圖形分成面積相等的兩部分,則將直線l向右平移3個(gè)單位長(zhǎng)度后所得直線l′的函數(shù)解析式為.15.如圖,一次函數(shù)y=(m+1)x+4的圖象與x軸的負(fù)半軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,且△OAB面積為4.(1)則m=,點(diǎn)A的坐標(biāo)為(,).(2)過(guò)點(diǎn)B作直線BP與x軸的正半軸相交于點(diǎn)P,且OP=4OA,求直線BP的解析式;(3)將一次函數(shù)y=(m+1)x+4的圖象繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的對(duì)應(yīng)的函數(shù)表達(dá)式.八.一次函數(shù)的應(yīng)用(共14小題)16.如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖①是產(chǎn)品日銷售量y(單位:件)與時(shí)間t(單位;天)的函數(shù)關(guān)系,圖②是一件產(chǎn)品的銷售利潤(rùn)z(單位:元)與時(shí)間t(單位:天)的函數(shù)關(guān)系,已知日銷售利潤(rùn)=日銷售量×一件產(chǎn)品的銷售利潤(rùn),下列結(jié)論錯(cuò)誤的是()A.第24天的銷售量為200件 B.第10天銷售一件產(chǎn)品的利潤(rùn)是15元 C.第12天與第30天這兩天的日銷售利潤(rùn)相等 D.第30天的日銷售利潤(rùn)是750元17.物理課上小剛在探究彈簧測(cè)力計(jì)的“彈簧的長(zhǎng)度與受到的拉力之間的關(guān)系”時(shí),在彈簧的彈性限度內(nèi),通過(guò)實(shí)驗(yàn)獲得下面的一組數(shù)據(jù).在彈簧的彈性限度內(nèi),若拉力為7.5N,則彈簧長(zhǎng)度為()拉力/N0123456彈簧長(zhǎng)度/cm10.012.014.016.018.020.022.0A.24cm B.25cm C.25.5cm D.26cm18.甲從A地去B地,乙從B地去A地,二人同時(shí)出發(fā)且始終保持勻速行駛,各自到達(dá)終點(diǎn)后停止.甲、乙兩人之間的距離s(單位:米)與乙行駛的時(shí)間t(單位:分鐘)之間的關(guān)系如圖所示,則下列結(jié)論不正確的是()A.A,B兩地相距3600米 B.出發(fā)40分鐘,甲與乙相遇 C.乙的速度為40米/分鐘 D.a(chǎn)的值為7019.中國(guó)人逢山開路,遇水架橋,靠自己勤勞的雙手創(chuàng)造了世界奇跡.雅西高速是連接雅安和西昌的高速公路,被國(guó)內(nèi)外專家學(xué)者公認(rèn)為全世界自然環(huán)境最惡劣、工程難度最大、科技含量最高的山區(qū)高速公路之一,全長(zhǎng)240km.一輛貨車和一輛轎車先后從西昌出發(fā)駛向雅安,如圖,線段OM表示貨車離西昌距離y1(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,線段AN表示轎車離西昌距離y2(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,則貨車出發(fā)小時(shí)后與轎車相遇.20.某商店銷售10臺(tái)A型和20臺(tái)B型電腦的利潤(rùn)為4000元,銷售20臺(tái)A型和10臺(tái)B型電腦的利潤(rùn)為3500元.(1)求每臺(tái)A型電腦和B型電腦的銷售利潤(rùn);(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.①求y關(guān)于x的函數(shù)關(guān)系式;②該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大?實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購(gòu)進(jìn)A型電腦70臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤(rùn)最大的進(jìn)貨方案.21.為了貫徹落實(shí)市委市府提出的“精準(zhǔn)扶貧”精神.某校特制定了一系列關(guān)于幫扶A、B兩貧困村的計(jì)劃.現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如下表:目的地車型A村(元/輛)B村(元/輛)大貨車800900小貨車400600(1)求這15輛車中大小貨車各多少輛?(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請(qǐng)你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.22.某地為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制,即每月用水量不超過(guò)12噸(含12噸)時(shí),每噸按政府補(bǔ)貼優(yōu)惠價(jià)收費(fèi);每月超過(guò)12噸,超過(guò)部分每噸按市場(chǎng)調(diào)節(jié)價(jià)收費(fèi),小黃家1月份用水24噸,交水費(fèi)42元.2月份用水20噸,交水費(fèi)32元.(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場(chǎng)調(diào)節(jié)價(jià)分別是多少元;(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,寫出y與x之間的函數(shù)關(guān)系式;(3)小黃家3月份用水26噸,他家應(yīng)交水費(fèi)多少元?23.快、慢兩車分別從相距180千米的甲、乙兩地同時(shí)出發(fā),沿同一路線勻速行駛,相向而行,快車到達(dá)乙地停留一段時(shí)間后,按原路原速返回甲地.慢車到達(dá)甲地比快車到達(dá)甲地早小時(shí),慢車速度是快車速度的一半,快、慢兩車到達(dá)甲地后停止行駛,兩車距各自出發(fā)地的路程y(千米)與所用時(shí)間x(小時(shí))的函數(shù)圖象如圖所示,請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:(1)請(qǐng)直接寫出快、慢兩車的速度;(2)求快車返回過(guò)程中y(千米)與x(小時(shí))的函數(shù)關(guān)系式;(3)兩車出發(fā)后經(jīng)過(guò)多長(zhǎng)時(shí)間相距90千米的路程?直接寫出答案.24.某市A,B兩個(gè)蔬菜基地得知四川C,D兩個(gè)災(zāi)民安置點(diǎn)分別急需蔬菜240t和260t的消息后,決定調(diào)運(yùn)蔬菜支援災(zāi)區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運(yùn)C,D兩個(gè)災(zāi)民安置點(diǎn)從A地運(yùn)往C,D兩處的費(fèi)用分別為每噸20元和25元,從B地運(yùn)往C,D兩處的費(fèi)用分別為每噸15元和18元.設(shè)從B地運(yùn)往C處的蔬菜為x噸.(1)請(qǐng)?zhí)顚懴卤恚⑶髢蓚€(gè)蔬菜基地調(diào)運(yùn)蔬菜的運(yùn)費(fèi)相等時(shí)x的值:CD總計(jì)/tA200Bx300總計(jì)/t240260500(2)設(shè)A,B兩個(gè)蔬菜基地的總運(yùn)費(fèi)為w元,求出w與x之間的函數(shù)關(guān)系式,并求總運(yùn)費(fèi)最小的調(diào)運(yùn)方案;(3)經(jīng)過(guò)搶修,從B地到C處的路況得到進(jìn)一步改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m>0),其余線路的運(yùn)費(fèi)不變,試討論總運(yùn)費(fèi)最小的調(diào)動(dòng)方案.25.水平放置的容器內(nèi)原有210毫米高的水,如圖,將若干個(gè)球逐一放入該容器中,每放入一個(gè)大球水面就上升4毫米,每放入一個(gè)小球水面就上升3毫米,假定放入容器中的所有球完全浸沒(méi)水中且水不溢出.設(shè)水面高為y毫米.(1)只放入大球,且個(gè)數(shù)為x大,求y與x大的函數(shù)關(guān)系式(不必寫出x大的范圍);(2)僅放入6個(gè)大球后,開始放入小球,且小球個(gè)數(shù)為x?、偾髖與x小的函數(shù)關(guān)系式(不必寫出x小范圍);②限定水面高不超過(guò)260毫米,最多能放入幾個(gè)小球?26.洋洋和妮妮分別從學(xué)校和公園同時(shí)出發(fā),沿同一條路相向而行.洋洋開始跑步中途改為步行,到達(dá)公園恰好用了30min.妮妮騎單車以300m/min的速度直接回學(xué)校.兩人離學(xué)校的路程y(m)與各自離開出發(fā)地的時(shí)間x(min)之間的函數(shù)圖象如圖所示.(1)學(xué)校與公園之間的路程為m,洋洋步行的速度為m/min;(2)求妮妮離學(xué)校的路程y關(guān)于x的函數(shù)解析式,并寫出自變量的取值范圍;(3)求兩人相遇的時(shí)間.27.在測(cè)浮力的實(shí)驗(yàn)中,下方為盛水的燒杯,上方有彈簧測(cè)力計(jì)懸掛的圓柱體,將圓柱體緩慢下降,直至圓柱體完全浸入水中,各種狀態(tài)如圖甲所示,其中,彈簧測(cè)力計(jì)在狀態(tài)②和④顯示的讀數(shù)分別為10N和5N.整個(gè)過(guò)程中,彈簧測(cè)力計(jì)讀數(shù)F與圓柱體下降高度h的關(guān)系圖象如圖乙所示.(1)圖乙中,點(diǎn)A對(duì)應(yīng)狀態(tài),點(diǎn)B對(duì)應(yīng)狀態(tài),(“狀態(tài)”后填寫圖形序號(hào))a=,b=;(2)已知彈簧測(cè)力計(jì)在狀態(tài)③時(shí)顯示的讀數(shù)為8N,求圓柱體浸入水中的高度.28.上游A地與下游B地相距80km,一艘游船計(jì)劃先從A地出發(fā)順?biāo)叫械竭_(dá)B地,然后立即返回A地.已知航行過(guò)程中,水流速度和該船的靜水速度都不變.如圖是這艘游船離A地的距離y(km)與航行時(shí)間x(小時(shí))之間關(guān)系圖象.已知船順?biāo)叫?、逆水航行的速度分別是船在靜水中的速度與水流速度的和與差.(1)求y與x的函數(shù)表達(dá)式;(2)一艘貨船在A地下游24km處,貨船與A處的游船同時(shí)前往B地,已知貨船的靜水速度為6km/時(shí).求貨船在前往B地的航行途中與游船相遇的時(shí)間.29.甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地300千米的目的地,乙車比甲車晚出發(fā)1小時(shí)(從甲車出發(fā)時(shí)開始計(jì)時(shí)).圖中折線OABD、線段EF分別表示甲、乙兩車所行路程y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系對(duì)應(yīng)的圖象(線段AB表示甲出發(fā)不足1小時(shí)因故停車檢修).請(qǐng)根據(jù)圖象所提供的信息,解決如下問(wèn)題:(1)求乙車行駛的路程y與時(shí)間x的函數(shù)關(guān)系式;(2)求甲車發(fā)生故障時(shí),距離出發(fā)地多少千米;(3)請(qǐng)直接寫出第一次相遇后,經(jīng)過(guò)多長(zhǎng)時(shí)間兩車相距30千米?九.一次函數(shù)綜合題(共10小題)30.如圖,已知點(diǎn)A(﹣1,0)和點(diǎn)B(1,2),在y軸上確定點(diǎn)P,使得△ABP為直角三角形,則滿足條件的點(diǎn)P共有()A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)31.一次函數(shù)y=x+4分別交x軸、y軸于A、B兩點(diǎn),在x軸上取一點(diǎn)C,使△ABC為等腰三角形,則這樣的點(diǎn)C的坐標(biāo)為.32.如圖,直線y=kx+b與x軸、y軸分別交于點(diǎn)A(4,0)、B(0,4),點(diǎn)P在x軸上運(yùn)動(dòng),連接PB,將△OBP沿直線BP折疊,點(diǎn)O的對(duì)應(yīng)點(diǎn)記為O′.(1)求k、b的值;(2)若點(diǎn)O′恰好落在直線AB上,求△OBP的面積;(3)將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)45°得到線段PC,直線PC與直線AB的交點(diǎn)為Q,在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在某一位置,使得△PBQ為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.33.如圖,在平面直角坐標(biāo)系中,直線y=x+2與x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)C(2,m)為直線y=x+2上一點(diǎn),直線y=﹣x+b過(guò)點(diǎn)C.(1)求m和b的值;(2)直線y=﹣x+b與x軸交于點(diǎn)D,動(dòng)點(diǎn)P從點(diǎn)D開始以每秒1個(gè)單位的速度向x軸負(fù)方向運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.①若點(diǎn)P在線段DA上,且△ACP的面積為10,求t的值;②是否存在t的值,使△ACP為等腰三角形?若存在,直接寫出t的值;若不存在,請(qǐng)說(shuō)明理由.34.如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+8分別交x軸、y軸于點(diǎn)A、B,將正比例函數(shù)y=2x的圖象沿y軸向下平移3個(gè)單位長(zhǎng)度得到直線l,直線l分別交x軸、y軸于點(diǎn)C、D,交直線AB于點(diǎn)E.(1)直接寫出直線l對(duì)應(yīng)的函數(shù)表達(dá)式;(2)在直線AB上存在點(diǎn)F(不與點(diǎn)E重合),使BF=BE,求點(diǎn)F的坐標(biāo);(3)在x軸上是否存在點(diǎn)P,使∠PDO=2∠PBO?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.35.如圖,一次函數(shù)y=﹣x+4的圖象與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,過(guò)AB中點(diǎn)D的直線CD交x軸于點(diǎn)C,且經(jīng)過(guò)第一象限的點(diǎn)E(6,4).(1)求A,B兩點(diǎn)的坐標(biāo)及直線CD的函數(shù)表達(dá)式;(2)連接BE,求△DBE的面積;(3)連接DO,在坐標(biāo)平面內(nèi)找一點(diǎn)F,使得以點(diǎn)C,O,F(xiàn)為頂點(diǎn)的三角形與△COD全等,請(qǐng)直接寫出點(diǎn)F的坐標(biāo).36.如圖,直線y=﹣x+4和直線y=2x+1相交于點(diǎn)A,分別與y軸交于B,C兩點(diǎn).(1)求點(diǎn)A的坐標(biāo);(2)在x軸上有一動(dòng)點(diǎn)P(a,0),過(guò)點(diǎn)P作x軸的垂線,分別交函數(shù)y=﹣x+4和y=2x+1的圖象于點(diǎn)D,E,若DE=6,求a的值.(3)在(2)的條件下,點(diǎn)Q為x軸負(fù)半軸上任意一點(diǎn),直接寫出△DEQ為等腰三角形時(shí)Q點(diǎn)的坐標(biāo).37.如圖,在平面直角坐標(biāo)系中,已知直線PA是一次函數(shù)y=x+m(m>0)的圖象,直線PB是一次函數(shù)y=﹣3x+n(n>m)的圖象,點(diǎn)P是兩直線的交點(diǎn),點(diǎn)A、B、C、Q分別是兩條直線與坐標(biāo)軸的交點(diǎn).(1)用m、n分別表示點(diǎn)A、B、P的坐標(biāo);(2)若四邊形PQOB的面積是,且CQ=AO,試求點(diǎn)P的坐標(biāo),并求出直線PA與PB的函數(shù)表達(dá)式;(3)在(2)的條件下,是否存在一點(diǎn)D,使以A、B、P、D為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.38.【模型建立】(1)如圖1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)A作AD⊥ED于點(diǎn)D,過(guò)點(diǎn)B作BE⊥ED于點(diǎn)E,求證:△BEC≌△CDA;【模型應(yīng)用】(2)如圖2,已知直線l1:y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°至直線l2;求直線l2的函數(shù)表達(dá)式;(3)如圖3,平面直角坐標(biāo)系內(nèi)有一點(diǎn)B(3,﹣4),過(guò)點(diǎn)B作BA⊥x軸于點(diǎn)A、BC⊥y軸于點(diǎn)C,點(diǎn)P是線段AB上的動(dòng)點(diǎn),點(diǎn)D是直線y=﹣2x+1上的動(dòng)點(diǎn)且在第四象限內(nèi).試探究△CPD能否成為等腰直角三角形?若能,求出點(diǎn)D的坐標(biāo),若不能,請(qǐng)說(shuō)明理由.39.如圖,一次函數(shù)y1=kx+b(k≠0)的圖象與坐標(biāo)軸交于A,B兩點(diǎn),與正比例函數(shù)y2=k′x(k′≠0)交于點(diǎn)C(﹣2,4),OA=6.(1)求一次函數(shù)y1=kx+b(k≠0)的表達(dá)式及△BOC的面積;(2)在線段AB上是否存在點(diǎn)P,使△OAP是以O(shè)A為底的等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.一十.坐標(biāo)與圖形變化-平移(共1小題)40.如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(4,0).將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=2x﹣6上時(shí),線段BC掃過(guò)的面積為()A.4 B.8 C.16 D.8
專題04一次函數(shù)(易錯(cuò)必刷40題10種題型專項(xiàng)訓(xùn)練)函數(shù)關(guān)系式函數(shù)自變量的取值范圍函數(shù)的圖象一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征一次函數(shù)圖象與幾何變換一次函數(shù)的應(yīng)用一次函數(shù)的圖象一次函數(shù)的性質(zhì)一次函數(shù)綜合題坐標(biāo)與圖形變化-平移一.函數(shù)關(guān)系式(共2小題)1.某鏈條每節(jié)長(zhǎng)為3.5cm,每?jī)晒?jié)鏈條相連部分重疊的圓的直徑為1.1cm,按照這種連接方式,x節(jié)鏈條總長(zhǎng)度為ycm,則y與x的關(guān)系式是()A.y=3.5x B.y=2.4x C.y=2.4x+1.1 D.y=3.5x﹣1.1【答案】C【解答】解:由題意得:1節(jié)鏈條的長(zhǎng)度=3.5cm,2節(jié)鏈條的總長(zhǎng)度=[3.5+(3.5﹣1.1)]cm,3節(jié)鏈條的總長(zhǎng)度=[3.5+(3.5﹣1.1)×2]cm,...∴x節(jié)鏈條總長(zhǎng)度y=[3.5+(3.5﹣1.1)×(x﹣1)]=(2.4x+1.1)(cm),∴y與x的關(guān)系式為:y=2.4x+1.1.故選:C.2.如圖,在矩形中截取兩個(gè)相同的圓作為圓柱的上、下底面,剩余的矩形作為圓柱的側(cè)面,剛好能組合成圓柱.設(shè)矩形的長(zhǎng)和寬分別為y和x,求y關(guān)于x的函數(shù)解析式y(tǒng)=x.【答案】y=x.【解答】解:由題意得:=y(tǒng)﹣,∴y=,即y=x,故答案為:y=x.二.函數(shù)自變量的取值范圍(共1小題)3.函數(shù)y=中,自變量x的取值范圍是()A.x≥1 B.x>1 C.x≥1且x≠2 D.x≠2【答案】C【解答】解:依題意得:x﹣1≥0且x﹣2≠0,解得x≥1且x≠2.故選:C.三.函數(shù)的圖象(共5小題)4.新龜兔賽跑的故事:龜兔從同一地點(diǎn)同時(shí)出發(fā)后,兔子很快把烏龜遠(yuǎn)遠(yuǎn)甩在后頭.驕傲自滿的兔子覺(jué)得自己遙遙領(lǐng)先,就躺在路邊呼呼大睡起來(lái).當(dāng)它一覺(jué)醒來(lái),發(fā)現(xiàn)烏龜已經(jīng)超過(guò)它,于是奮力直追,最后同時(shí)到達(dá)終點(diǎn).用S1、S2分別表示烏龜和兔子賽跑的路程,t為賽跑時(shí)間,則下列圖象中與故事情節(jié)相吻合的是()A. B. C. D.【答案】C【解答】解:A.此函數(shù)圖象中,S2先達(dá)到最大值,即兔子先到終點(diǎn),不符合題意;B.此函數(shù)圖象中,S2第2段隨時(shí)間增加其路程一直保持不變,與“當(dāng)它一覺(jué)醒來(lái),發(fā)現(xiàn)烏龜已經(jīng)超過(guò)它,于是奮力直追”不符,不符合題意;C.此函數(shù)圖象中,烏龜和兔子同時(shí)到達(dá)終點(diǎn),符合題意;D.此函數(shù)圖象中,S1先達(dá)到最大值,即烏龜先到終點(diǎn),不符合題意.故選:C.5.甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時(shí)出發(fā),勻速行駛,各自到達(dá)終點(diǎn)后停止,設(shè)甲乙兩人間距離為s(單位:千米),甲行駛的時(shí)間為(單位:小時(shí)),s與t之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:①出發(fā)1小時(shí)時(shí),甲、乙在途中相遇;②乙開車速度是80千米/小時(shí);③出發(fā)1.5小時(shí)時(shí),乙比甲多行駛了60千米;④出發(fā)3小時(shí)時(shí),甲乙同時(shí)到達(dá)終點(diǎn);其中正確結(jié)論的個(gè)數(shù)是()A.1 B.2 C.3 D.4【答案】C【解答】解:由圖象可得,當(dāng)t=1時(shí),s=0,即出發(fā)1小時(shí)時(shí),甲乙在途中相遇,故①正確,甲的速度是:120÷3=40千米/時(shí),則乙的速度是:120÷1﹣40=80千米/h,故②正確;出發(fā)1.5小時(shí)時(shí),乙比甲多行駛路程是:1.5×(80﹣40)=60千米,故③正確;在1.5小時(shí)時(shí),乙到達(dá)終點(diǎn),甲在3小時(shí)時(shí)到達(dá)終點(diǎn),故④錯(cuò)誤,故選:C.6.勻速地向一個(gè)容器注水,最后把容器注滿.在注水的過(guò)程中,水面高度h隨時(shí)間t的變化規(guī)律如圖所示(圖中OEFG為一折線),那么這個(gè)容器的形狀可能是下列圖中的()A. B. C. D.【答案】B【解答】解:從圖中可以看出,OE上升最快,EF上升較慢,F(xiàn)G上升較快,所以容器的底部容積最小,中間容積最大,上面容積較大,故選:B.7.將一圓柱形小水杯固定在大圓柱形容器底面中央,小水杯中有部分水,現(xiàn)用一個(gè)注水管沿大容器內(nèi)壁勻速注水,如圖所示,則小水杯水面的高度h(cm)與注水時(shí)間t(min)的函數(shù)圖象大致是()A.B. C.D.【答案】B【解答】解:將一盛有部分水的圓柱形小玻璃杯放入事先沒(méi)有水的大圓柱形容器內(nèi),小玻璃杯內(nèi)的水原來(lái)的高度一定大于0,則可以判斷A、D一定錯(cuò)誤,用一注水管沿大容器內(nèi)壁勻速注水,水開始時(shí)不會(huì)流入小玻璃杯,因而這段時(shí)間h不變,當(dāng)大杯中的水面與小杯水平時(shí),開始向小杯中流水,h隨t的增大而增大,當(dāng)水注滿小杯后,小杯內(nèi)水面的高度h不再變化.故選:B.8.如圖,邊長(zhǎng)分別為1和2的兩個(gè)正方形,其中有一條邊在同一水平線上,小正方形沿該水平線自左向右勻速穿過(guò)大正方形,設(shè)穿過(guò)的時(shí)間為t,大正方形的面積為S1,小正方形與大正方形重疊部分的面積為S2,若S=S1﹣S2,則S隨t變化的函數(shù)圖象大致為()A. B. C. D.【答案】A【解答】解:由題意得:S的最小值是3,S的最大值是4,所以函數(shù)圖象中的橫線應(yīng)該更高一些,故選:A.四.一次函數(shù)的圖象(共1小題)9.已知一次函數(shù)y=kx+b,函數(shù)值y隨自變量x的增大而減小,且kb<0,則函數(shù)y=kx+b的圖象大致是()A.B. C.D.【答案】C【解答】解:∵一次函數(shù)y=kx+b,y隨著x的增大而減小,∴k<0,∴一次函數(shù)y=kx+b的圖象經(jīng)過(guò)第二、四象限;∵kb<0,∴b>0,∴圖象與y軸的交點(diǎn)在x軸上方,∴一次函數(shù)y=kx+b的圖象經(jīng)過(guò)第一、二、四象限.故選:C.五.一次函數(shù)的性質(zhì)(共1小題)10.已知一次函數(shù)y=kx+b的圖象如圖所示,當(dāng)0<y<3時(shí),x的取值范圍是()A.﹣2<x<0 B.﹣2<x<2 C.x>﹣2 D.x≤0【答案】A【解答】解:由一次函數(shù)y=kx+b的圖象可知,當(dāng)0<y<3時(shí),﹣2<x<0,故選:A.六.一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征(共3小題)11.已知點(diǎn)(﹣4,y1),(2,y2)都在直線y=﹣x+2上,則y1,y2大小關(guān)系是()A.y1>y2 B.y1=y(tǒng)2 C.y1<y2 D.不能比較【答案】A【解答】解:∵k=﹣<0,∴y隨x的增大而減?。擤?<2,∴y1>y2.故選:A.12.若直線y=3x+b與兩坐標(biāo)軸所圍成的三角形的面積是6個(gè)單位,則b的值是±6.【答案】見試題解答內(nèi)容【解答】解:直線y=3x+b與兩坐標(biāo)軸的交點(diǎn)為(0,b)、(﹣,0)則直線y=3x+b與兩坐標(biāo)軸所圍成的三角形的面積:?|b|?|﹣|=6解得:b=6,b=﹣6,則b的值是±6.故答案為:±613.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=﹣|x|+3的圖象與性質(zhì)進(jìn)行了探究.下面是小明的探究過(guò)程,請(qǐng)你解決相關(guān)問(wèn)題.(1)如表y與x的幾組對(duì)應(yīng)值:x…﹣4﹣3﹣2﹣101234…y…﹣1012321a﹣1…①a=0;②若A(b,﹣7)為該函數(shù)圖象上的點(diǎn),則b=±10;(2)如圖,在平面直角坐標(biāo)系中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;①該函數(shù)有最大值(填“最大值”或“最小值”);并寫出這個(gè)值為3;②求出函數(shù)圖象與坐標(biāo)軸在第二象限內(nèi)所圍成的圖形的面積.【答案】(1)①0;②±10;(2)圖象詳見解答部分;①最大值,3;②.【解答】解:(1)①當(dāng)x=3時(shí),求得a=0,故答案為:0;②若A(b,﹣7)為該函數(shù)圖象上的點(diǎn),∴﹣|x|+3=﹣7,解得b=±10;故答案為:±10.(2)函數(shù)圖象如圖所示:①由圖知,該函數(shù)有最大值3,故答案為:最大值,3;②由圖知,函數(shù)圖象與x軸負(fù)半軸的交點(diǎn)為(﹣3,0),與y軸正半軸的交點(diǎn)為(0,3),∴函數(shù)圖象在第二象限內(nèi)所圍成的圖形的面積為:3×3×=.七.一次函數(shù)圖象與幾何變換(共2小題)14.如圖,將八個(gè)邊長(zhǎng)為1的小正方形擺放在平面直角坐標(biāo)系中,若過(guò)原點(diǎn)的直線l將圖形分成面積相等的兩部分,則將直線l向右平移3個(gè)單位長(zhǎng)度后所得直線l′的函數(shù)解析式為y=x﹣.【答案】見試題解答內(nèi)容【解答】解:設(shè)直線l和八個(gè)正方形的最上面交點(diǎn)為A,過(guò)A作AB⊥OB于B,過(guò)A作AC⊥OC于C,∵正方形的邊長(zhǎng)為1,∴OB=3,∵經(jīng)過(guò)原點(diǎn)的一條直線l將這八個(gè)正方形分成面積相等的兩部分,∴兩邊分別是4,∴三角形ABO面積是5,∴OB?AB=5,∴AB=,∴OC=,由此可知直線l經(jīng)過(guò)(,3),設(shè)直線l為y=kx,則3=k,k=,∴直線l解析式為y=x,∴直線l向右平移3個(gè)單位長(zhǎng)度后所得直線l′的函數(shù)解析式為y=(x﹣3),即y=x﹣,故答案為:y=x﹣.15.如圖,一次函數(shù)y=(m+1)x+4的圖象與x軸的負(fù)半軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,且△OAB面積為4.(1)則m=1,點(diǎn)A的坐標(biāo)為(﹣2,0).(2)過(guò)點(diǎn)B作直線BP與x軸的正半軸相交于點(diǎn)P,且OP=4OA,求直線BP的解析式;(3)將一次函數(shù)y=(m+1)x+4的圖象繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的對(duì)應(yīng)的函數(shù)表達(dá)式.【答案】見試題解答內(nèi)容【解答】解:(1)由一次函數(shù)y=(m+1)x+4,令x=0,則y=4,∴B(0,4),∴OB=4,∵S△OAB=4,∴×OA×OB=4,解得OA=2,∴A(﹣2,0),把點(diǎn)A(﹣2,0)代入y=(m+1)x+4,得m=1,故答案為:1;﹣2,0;(2)∵OP=4OA,OA=2,∴P(8,0),設(shè)直線BP的解析式為y=kx+b,將(8,0),(0,4)代入得,解得k=﹣,b=4,∴直線BP的解析式為y=﹣x+4;(3)設(shè)直線AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°得到直線BE,如圖,過(guò)點(diǎn)A作AF⊥AB交BE于點(diǎn)F,作FH⊥x軸于H.則∠AHF=∠BOA=90°,AF=BA,∠FAH=∠ABO,∴△AOB≌△FHA(AAS),∴FH=AO=2,AH=BO=4,∴HO=6,∴F(﹣6,2),設(shè)直線BE的解析式為y=mx+n,則把點(diǎn)F和點(diǎn)B的坐標(biāo)代入,可得,解得,∴直線BE的解析式為y=x+4.八.一次函數(shù)的應(yīng)用(共14小題)16.如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖①是產(chǎn)品日銷售量y(單位:件)與時(shí)間t(單位;天)的函數(shù)關(guān)系,圖②是一件產(chǎn)品的銷售利潤(rùn)z(單位:元)與時(shí)間t(單位:天)的函數(shù)關(guān)系,已知日銷售利潤(rùn)=日銷售量×一件產(chǎn)品的銷售利潤(rùn),下列結(jié)論錯(cuò)誤的是()A.第24天的銷售量為200件 B.第10天銷售一件產(chǎn)品的利潤(rùn)是15元 C.第12天與第30天這兩天的日銷售利潤(rùn)相等 D.第30天的日銷售利潤(rùn)是750元【答案】C【解答】解:A、根據(jù)圖①可得第24天的銷售量為200件,故正確;B、設(shè)當(dāng)0≤t≤20,一件產(chǎn)品的銷售利潤(rùn)z(單位:元)與時(shí)間t(單位:天)的函數(shù)關(guān)系為z=kt+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣t+25,當(dāng)t=10時(shí),y=﹣10+25=15,故正確;C、當(dāng)0≤t≤24時(shí),設(shè)產(chǎn)品日銷售量y(單位:件)與時(shí)間t(單位;天)的函數(shù)關(guān)系為y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,當(dāng)t=12時(shí),y=150,z=﹣12+25=13,∴第12天的日銷售利潤(rùn)為:150×13=1950(元),第30天的日銷售利潤(rùn)為:150×5=750(元),750≠1950,故C錯(cuò)誤;D、第30天的日銷售利潤(rùn)為:150×5=750(元),故正確.故選:C.17.物理課上小剛在探究彈簧測(cè)力計(jì)的“彈簧的長(zhǎng)度與受到的拉力之間的關(guān)系”時(shí),在彈簧的彈性限度內(nèi),通過(guò)實(shí)驗(yàn)獲得下面的一組數(shù)據(jù).在彈簧的彈性限度內(nèi),若拉力為7.5N,則彈簧長(zhǎng)度為()拉力/N0123456彈簧長(zhǎng)度/cm10.012.014.016.018.020.022.0A.24cm B.25cm C.25.5cm D.26cm【答案】B【解答】解:根據(jù)題意可設(shè),拉力和彈簧長(zhǎng)度的關(guān)系式為:y=kx+b,∵點(diǎn)(0,10),(1,12)在函數(shù)圖象上,∴,解得:.∴當(dāng)拉力為7.5N時(shí),即x=7.5時(shí),y=2×7.5+10=25.故選:B.18.甲從A地去B地,乙從B地去A地,二人同時(shí)出發(fā)且始終保持勻速行駛,各自到達(dá)終點(diǎn)后停止.甲、乙兩人之間的距離s(單位:米)與乙行駛的時(shí)間t(單位:分鐘)之間的關(guān)系如圖所示,則下列結(jié)論不正確的是()A.A,B兩地相距3600米 B.出發(fā)40分鐘,甲與乙相遇 C.乙的速度為40米/分鐘 D.a(chǎn)的值為70【答案】D【解答】解:當(dāng)t=0時(shí),s=3600,∴A,B兩地相距3600米,∴A正確,不符合題意;當(dāng)t=40時(shí),s=0,∴出發(fā)40分鐘,甲與乙相遇,∴B正確,不符合題意;當(dāng)t=90時(shí),乙到達(dá)A地,∴乙的速度為3600÷90=40(米/分鐘),∴C正確,不符合題意;∴當(dāng)t=40時(shí),甲、乙兩人相遇,∴甲的速度為(3600﹣40×40)÷40=50(米/分鐘),∵當(dāng)t=a時(shí),甲到達(dá)B地,∴a=3600÷50=72,∴D不正確,符合題意;故選:D.19.中國(guó)人逢山開路,遇水架橋,靠自己勤勞的雙手創(chuàng)造了世界奇跡.雅西高速是連接雅安和西昌的高速公路,被國(guó)內(nèi)外專家學(xué)者公認(rèn)為全世界自然環(huán)境最惡劣、工程難度最大、科技含量最高的山區(qū)高速公路之一,全長(zhǎng)240km.一輛貨車和一輛轎車先后從西昌出發(fā)駛向雅安,如圖,線段OM表示貨車離西昌距離y1(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,線段AN表示轎車離西昌距離y2(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,則貨車出發(fā)1.8小時(shí)后與轎車相遇.【答案】1.8.【解答】解:設(shè)線段OM的函數(shù)關(guān)系式為y1=k1x(k1為常數(shù),且k1≠0).將坐標(biāo)M(4,240)代入y1=k1x,得4k1=240,解得k1=60,∴y1=60x(0≤x≤4);設(shè)線段AN的函數(shù)關(guān)系式為y2=k2x+b(k2、b為常數(shù),且k2、b≠0).將坐標(biāo)B(1.5,75)和N(3,240)代入y2=k2x+b,得,解得,∴y2=110x﹣90,當(dāng)y2=0時(shí),得110x﹣90=0,解得x=,∴線段AN的函數(shù)關(guān)系式為y2=110x﹣90(≤x≤3).當(dāng)兩車相遇時(shí),y1=y(tǒng)2,得60x=110x﹣90,解得x=1.8,∴貨車出發(fā)1.8小時(shí)后與轎車相遇.故答案為:1.8.20.某商店銷售10臺(tái)A型和20臺(tái)B型電腦的利潤(rùn)為4000元,銷售20臺(tái)A型和10臺(tái)B型電腦的利潤(rùn)為3500元.(1)求每臺(tái)A型電腦和B型電腦的銷售利潤(rùn);(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.①求y關(guān)于x的函數(shù)關(guān)系式;②該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大?(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購(gòu)進(jìn)A型電腦70臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤(rùn)最大的進(jìn)貨方案.【答案】見試題解答內(nèi)容【解答】解:(1)設(shè)每臺(tái)A型電腦銷售利潤(rùn)為a元,每臺(tái)B型電腦的銷售利潤(rùn)為b元;根據(jù)題意得解得答:每臺(tái)A型電腦銷售利潤(rùn)為100元,每臺(tái)B型電腦的銷售利潤(rùn)為150元.(2)①據(jù)題意得,y=100x+150(100﹣x),即y=﹣50x+15000,②據(jù)題意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y隨x的增大而減小,∵x為正整數(shù),∴當(dāng)x=34時(shí),y取最大值,則100﹣x=66,即商店購(gòu)進(jìn)34臺(tái)A型電腦和66臺(tái)B型電腦的銷售利潤(rùn)最大.(3)據(jù)題意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①當(dāng)0<m<50時(shí),y隨x的增大而減小,∴當(dāng)x=34時(shí),y取最大值,即商店購(gòu)進(jìn)34臺(tái)A型電腦和66臺(tái)B型電腦的銷售利潤(rùn)最大.②m=50時(shí),m﹣50=0,y=15000,即商店購(gòu)進(jìn)A型電腦數(shù)量滿足33≤x≤70的整數(shù)時(shí),均獲得最大利潤(rùn);③當(dāng)50<m<100時(shí),m﹣50>0,y隨x的增大而增大,∴當(dāng)x=70時(shí),y取得最大值.即商店購(gòu)進(jìn)70臺(tái)A型電腦和30臺(tái)B型電腦的銷售利潤(rùn)最大.21.為了貫徹落實(shí)市委市府提出的“精準(zhǔn)扶貧”精神.某校特制定了一系列關(guān)于幫扶A、B兩貧困村的計(jì)劃.現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如下表:目的地車型A村(元/輛)B村(元/輛)大貨車800900小貨車400600(1)求這15輛車中大小貨車各多少輛?(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請(qǐng)你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.【答案】見試題解答內(nèi)容【解答】解:(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)題意得:解得:.∴大貨車用8輛,小貨車用7輛.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x為整數(shù)).(3)由題意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且為整數(shù),∵y=100x+9400,k=100>0,y隨x的增大而增大,∴當(dāng)x=5時(shí),y最小,最小值為y=100×5+9400=9900(元).答:使總運(yùn)費(fèi)最少的調(diào)配方案是:5輛大貨車、5輛小貨車前往A村;3輛大貨車、2輛小貨車前往B村.最少運(yùn)費(fèi)為9900元.22.某地為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制,即每月用水量不超過(guò)12噸(含12噸)時(shí),每噸按政府補(bǔ)貼優(yōu)惠價(jià)收費(fèi);每月超過(guò)12噸,超過(guò)部分每噸按市場(chǎng)調(diào)節(jié)價(jià)收費(fèi),小黃家1月份用水24噸,交水費(fèi)42元.2月份用水20噸,交水費(fèi)32元.(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場(chǎng)調(diào)節(jié)價(jià)分別是多少元;(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,寫出y與x之間的函數(shù)關(guān)系式;(3)小黃家3月份用水26噸,他家應(yīng)交水費(fèi)多少元?【答案】見試題解答內(nèi)容【解答】解:(1)設(shè)每噸水的政府補(bǔ)貼優(yōu)惠價(jià)為a元,市場(chǎng)調(diào)節(jié)價(jià)為b元.根據(jù)題意得,解得:.答:每噸水的政府補(bǔ)貼優(yōu)惠價(jià)為1元,市場(chǎng)調(diào)節(jié)價(jià)為2.5元.(2)∵當(dāng)0≤x≤12時(shí),y=x;當(dāng)x>12時(shí),y=12+(x﹣12)×2.5=2.5x﹣18,∴所求函數(shù)關(guān)系式為:y=.(3)∵x=26>12,∴把x=26代入y=2.5x﹣18,得:y=2.5×26﹣18=47(元).答:小黃家三月份應(yīng)交水費(fèi)47元.23.快、慢兩車分別從相距180千米的甲、乙兩地同時(shí)出發(fā),沿同一路線勻速行駛,相向而行,快車到達(dá)乙地停留一段時(shí)間后,按原路原速返回甲地.慢車到達(dá)甲地比快車到達(dá)甲地早小時(shí),慢車速度是快車速度的一半,快、慢兩車到達(dá)甲地后停止行駛,兩車距各自出發(fā)地的路程y(千米)與所用時(shí)間x(小時(shí))的函數(shù)圖象如圖所示,請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:(1)請(qǐng)直接寫出快、慢兩車的速度;(2)求快車返回過(guò)程中y(千米)與x(小時(shí))的函數(shù)關(guān)系式;(3)兩車出發(fā)后經(jīng)過(guò)多長(zhǎng)時(shí)間相距90千米的路程?直接寫出答案.【答案】見試題解答內(nèi)容【解答】解:(1)慢車的速度=180÷(﹣)=60千米/時(shí),快車的速度=60×2=120千米/時(shí);(2)快車停留的時(shí)間:﹣×2=(小時(shí)),+=2(小時(shí)),即C(2,180),設(shè)CD的解析式為:y=kx+b,則將C(2,180),D(,0)代入,得,解得,∴快車返回過(guò)程中y(千米)與x(小時(shí))的函數(shù)關(guān)系式為y=﹣120x+420(2≤x≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快車從甲地到乙地需要180÷120=小時(shí),快車返回之后:60x=90+120(x﹣﹣)解得x=綜上所述,兩車出發(fā)后經(jīng)過(guò)或或小時(shí)相距90千米的路程.24.某市A,B兩個(gè)蔬菜基地得知四川C,D兩個(gè)災(zāi)民安置點(diǎn)分別急需蔬菜240t和260t的消息后,決定調(diào)運(yùn)蔬菜支援災(zāi)區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運(yùn)C,D兩個(gè)災(zāi)民安置點(diǎn)從A地運(yùn)往C,D兩處的費(fèi)用分別為每噸20元和25元,從B地運(yùn)往C,D兩處的費(fèi)用分別為每噸15元和18元.設(shè)從B地運(yùn)往C處的蔬菜為x噸.(1)請(qǐng)?zhí)顚懴卤?,并求兩個(gè)蔬菜基地調(diào)運(yùn)蔬菜的運(yùn)費(fèi)相等時(shí)x的值:CD總計(jì)/tA(240﹣x)(x﹣40)200Bx(300﹣x)300總計(jì)/t240260500(2)設(shè)A,B兩個(gè)蔬菜基地的總運(yùn)費(fèi)為w元,求出w與x之間的函數(shù)關(guān)系式,并求總運(yùn)費(fèi)最小的調(diào)運(yùn)方案;(3)經(jīng)過(guò)搶修,從B地到C處的路況得到進(jìn)一步改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m>0),其余線路的運(yùn)費(fèi)不變,試討論總運(yùn)費(fèi)最小的調(diào)動(dòng)方案.【答案】見試題解答內(nèi)容【解答】解:(1)填表如下:CD總計(jì)/tA(240﹣x)(x﹣40)200Bx(300﹣x)300總計(jì)/t240260500依題意得:20(240﹣x)+25(x﹣40)=15x+18(300﹣x)解得:x=200兩個(gè)蔬菜基地調(diào)運(yùn)蔬菜的運(yùn)費(fèi)相等時(shí)x的值為200.(2)w與x之間的函數(shù)關(guān)系為:w=20(240﹣x)+25(x﹣40)+15x+18(300﹣x)=2x+9200由題意得:∴40≤x≤240∵在w=2x+9200中,2>0∴w隨x的增大而增大∴當(dāng)x=40時(shí),總運(yùn)費(fèi)最小此時(shí)調(diào)運(yùn)方案為:(3)由題意得w=(2﹣m)x+9200∴0<m<2,(2)中調(diào)運(yùn)方案總費(fèi)用最小;m=2時(shí),在40≤x≤240的前提下調(diào)運(yùn)方案的總費(fèi)用不變;2<m<15時(shí),x=240總費(fèi)用最小,其調(diào)運(yùn)方案如下:25.水平放置的容器內(nèi)原有210毫米高的水,如圖,將若干個(gè)球逐一放入該容器中,每放入一個(gè)大球水面就上升4毫米,每放入一個(gè)小球水面就上升3毫米,假定放入容器中的所有球完全浸沒(méi)水中且水不溢出.設(shè)水面高為y毫米.(1)只放入大球,且個(gè)數(shù)為x大,求y與x大的函數(shù)關(guān)系式(不必寫出x大的范圍);(2)僅放入6個(gè)大球后,開始放入小球,且小球個(gè)數(shù)為x?、偾髖與x小的函數(shù)關(guān)系式(不必寫出x小范圍);②限定水面高不超過(guò)260毫米,最多能放入幾個(gè)小球?【答案】見試題解答內(nèi)容【解答】解:(1)根據(jù)題意得:y=4x大+210;(2)①當(dāng)x大=6時(shí),y=4×6+210=234,∴y=3x小+234;②依題意,得3x小+234≤260,解得:,∵x小為自然數(shù),∴x小最大為8,即最多能放入8個(gè)小球.26.洋洋和妮妮分別從學(xué)校和公園同時(shí)出發(fā),沿同一條路相向而行.洋洋開始跑步中途改為步行,到達(dá)公園恰好用了30min.妮妮騎單車以300m/min的速度直接回學(xué)校.兩人離學(xué)校的路程y(m)與各自離開出發(fā)地的時(shí)間x(min)之間的函數(shù)圖象如圖所示.(1)學(xué)校與公園之間的路程為4000m,洋洋步行的速度為100m/min;(2)求妮妮離學(xué)校的路程y關(guān)于x的函數(shù)解析式,并寫出自變量的取值范圍;(3)求兩人相遇的時(shí)間.【答案】見試題解答內(nèi)容【解答】解:(1)結(jié)合題意和圖象可知,線段CD為妮妮路程與時(shí)間函數(shù)圖象,折線O﹣A﹣B為洋洋的路程與時(shí)間圖象,則學(xué)校與公園之間的路程為4000米,洋洋步行的速度==100m/min,故答案為:4000,100;(2)妮妮騎自行車從公園回學(xué)校所需時(shí)間為4000÷300=(分鐘),∴妮妮離學(xué)校的路程y關(guān)于x的函數(shù)解析式為y=4000﹣300x(0≤x≤);(3)當(dāng)x=10時(shí),妮妮離學(xué)校的路程y=4000﹣300x=4000﹣300×10=1000(米),由圖可知x=10時(shí),洋洋離學(xué)校的路程是2000米,∴兩人相遇是在洋洋慢跑途中,由4000﹣300x=x得:x=8,∴兩人相遇的時(shí)間為8min.27.在測(cè)浮力的實(shí)驗(yàn)中,下方為盛水的燒杯,上方有彈簧測(cè)力計(jì)懸掛的圓柱體,將圓柱體緩慢下降,直至圓柱體完全浸入水中,各種狀態(tài)如圖甲所示,其中,彈簧測(cè)力計(jì)在狀態(tài)②和④顯示的讀數(shù)分別為10N和5N.整個(gè)過(guò)程中,彈簧測(cè)力計(jì)讀數(shù)F與圓柱體下降高度h的關(guān)系圖象如圖乙所示.(1)圖乙中,點(diǎn)A對(duì)應(yīng)狀態(tài)②,點(diǎn)B對(duì)應(yīng)狀態(tài)④,(“狀態(tài)”后填寫圖形序號(hào))a=10,b=5;(2)已知彈簧測(cè)力計(jì)在狀態(tài)③時(shí)顯示的讀數(shù)為8N,求圓柱體浸入水中的高度.【答案】(1)②,④,10,5;(2)2.4cm.【解答】解:(1)如圖②,當(dāng)圓柱體剛要浸入水中時(shí),彈簧測(cè)力計(jì)的讀數(shù)由10N開始減?。蝗鐖D④,當(dāng)圓柱體剛剛完全浸入水中時(shí),彈簧測(cè)力計(jì)的讀數(shù)減小至5N并保持不變.故答案為:②,④,10,5.(2)當(dāng)4≤h≤10時(shí),設(shè)F=kh+b(k、b為常數(shù),且k≠0).將坐標(biāo)A(4,10)和B(10,5)代入F=kh+b,得,解得,∴F=﹣h+(4≤h≤10).當(dāng)F=8時(shí),得﹣h+=8,解得h=6.4,6.4﹣4=2.4(cm),∴圓柱體浸入水中的高度是2.4cm.28.上游A地與下游B地相距80km,一艘游船計(jì)劃先從A地出發(fā)順?biāo)叫械竭_(dá)B地,然后立即返回A地.已知航行過(guò)程中,水流速度和該船的靜水速度都不變.如圖是這艘游船離A地的距離y(km)與航行時(shí)間x(小時(shí))之間關(guān)系圖象.已知船順?biāo)叫?、逆水航行的速度分別是船在靜水中的速度與水流速度的和與差.(1)求y與x的函數(shù)表達(dá)式;(2)一艘貨船在A地下游24km處,貨船與A處的游船同時(shí)前往B地,已知貨船的靜水速度為6km/時(shí).求貨船在前往B地的航行途中與游船相遇的時(shí)間.【答案】(1)y=;(2)2h.【解答】解:∵上游A地與下游B地相距80km,∴當(dāng)x=4時(shí),y=80.①當(dāng)0≤x<4時(shí),設(shè)y=k1x,∵當(dāng)x=4時(shí),y=80,∴4k1=80,解得k1=20,∴y=20x;②當(dāng)4≤x≤9時(shí),設(shè)y=k2x+b,∵當(dāng)x=4時(shí),y=80;當(dāng)x=9時(shí),y=0,∴,解得,∴y=﹣16x+144;綜上,y=.(2)設(shè)游船在靜水中的速度為xkm/h,水流速度為ykm/h,根據(jù)題意,得,解得,∴游船在靜水中的速度為18km/h,水流速度為2km/h,∴游船前往B地的航行速度為18+2=20(km/h),貨船前往B地的航行速度為6+2=8(km/h).設(shè)th時(shí)貨船在前往B地的航行途中與游船相遇,則20t=24+8t,解得t=2,∴貨船在前往B地的航行途中與游船相遇的時(shí)間為2h.29.甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地300千米的目的地,乙車比甲車晚出發(fā)1小時(shí)(從甲車出發(fā)時(shí)開始計(jì)時(shí)).圖中折線OABD、線段EF分別表示甲、乙兩車所行路程y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系對(duì)應(yīng)的圖象(線段AB表示甲出發(fā)不足1小時(shí)因故停車檢修).請(qǐng)根據(jù)圖象所提供的信息,解決如下問(wèn)題:(1)求乙車行駛的路程y與時(shí)間x的函數(shù)關(guān)系式;(2)求甲車發(fā)生故障時(shí),距離出發(fā)地多少千米;(3)請(qǐng)直接寫出第一次相遇后,經(jīng)過(guò)多長(zhǎng)時(shí)間兩車相距30千米?【答案】(1)y與x的函數(shù)關(guān)系式為y=60x﹣60(1≤x≤6);(2)甲車發(fā)生故障時(shí),距離出發(fā)地50千米.(3)第一次相遇后,經(jīng)過(guò)小時(shí)或小時(shí)或小時(shí)兩車相距30千米.【解答】解:(1)設(shè)乙車所行路程y與時(shí)間x的函數(shù)關(guān)系式為y=k1x+b1,把(1,0)和(6,300)代入,得,解得:,∴y與x的函數(shù)關(guān)系式為y=60x﹣60(1≤x≤6);(2)由圖可得,交點(diǎn)C表示第二次相遇,C點(diǎn)的橫坐標(biāo)為4.75,此時(shí)y=60×4.75﹣60=225,則C點(diǎn)坐標(biāo)為(4.75,225),設(shè)線段BC對(duì)應(yīng)的函數(shù)關(guān)系式為y=k2x+b2,把(4.75,225)、(5.5,300)代入,得,解得:,故y與x的函數(shù)關(guān)系式為y=100x﹣250,則當(dāng)x=3時(shí),y=100×3﹣250=50.可得:點(diǎn)B的縱坐標(biāo)為50,∴甲車發(fā)生故障時(shí),距離出發(fā)地50千米.(3)∵AB表示因故停車檢修,∴交點(diǎn)的縱坐標(biāo)為50,令y=50,則60x﹣60=50,解得x=;∴60x﹣60﹣50=30或60x﹣60﹣(100x﹣250)=30或100x﹣250﹣(60x﹣60)=30,解得x=或x=4或x=5.5;∴﹣=;4﹣=;5.5﹣=;∴第一次相遇后,經(jīng)過(guò)小時(shí)或小時(shí)或小時(shí)兩車相距30千米.九.一次函數(shù)綜合題(共10小題)30.如圖,已知點(diǎn)A(﹣1,0)和點(diǎn)B(1,2),在y軸上確定點(diǎn)P,使得△ABP為直角三角形,則滿足條件的點(diǎn)P共有()A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)【答案】B【解答】解:①以A為直角頂點(diǎn),可過(guò)A作直線垂直于AB,與y軸交于一點(diǎn),這一點(diǎn)符合點(diǎn)P的要求;②以B為直角頂點(diǎn),可過(guò)B作直線垂直于AB,與y軸交于一點(diǎn),這一點(diǎn)也符合P點(diǎn)的要求;③以P為直角頂點(diǎn),與y軸共有2個(gè)交點(diǎn).所以滿足條件的點(diǎn)P共有4個(gè).故選:B.31.一次函數(shù)y=x+4分別交x軸、y軸于A、B兩點(diǎn),在x軸上取一點(diǎn)C,使△ABC為等腰三角形,則這樣的點(diǎn)C的坐標(biāo)為(﹣8,0)(3,0)(2,0)(,0).【答案】見試題解答內(nèi)容【解答】解:當(dāng)x=0時(shí),y=4,當(dāng)y=0時(shí),x=﹣3,即A(﹣3,0),B(0,4),OA=3,OB=4,由勾股定理得:AB=5,有三種情況:①以A為圓心,以AB為半徑交x軸于兩點(diǎn),此時(shí)AC=AB=5,C的坐標(biāo)是(2,0)和(﹣8,0);②以B為圓心,以AB為半徑交x軸于一點(diǎn)(A除外),此時(shí)AB=BC,OA=OC=3,C的坐標(biāo)是(3,0);③作AB的垂直平分線交x軸于C,設(shè)C的坐標(biāo)是(a,0),A(﹣3,0),B(0,4),∵AC=BC,由勾股定理得:(a+3)2=a2+42,解得:a=,∴C的坐標(biāo)是(,0),故答案為:(﹣8,0)(3,0)(2,0)(,0).32.如圖,直線y=kx+b與x軸、y軸分別交于點(diǎn)A(4,0)、B(0,4),點(diǎn)P在x軸上運(yùn)動(dòng),連接PB,將△OBP沿直線BP折疊,點(diǎn)O的對(duì)應(yīng)點(diǎn)記為O′.(1)求k、b的值;(2)若點(diǎn)O′恰好落在直線AB上,求△OBP的面積;(3)將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)45°得到線段PC,直線PC與直線AB的交點(diǎn)為Q,在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在某一位置,使得△PBQ為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】見試題解答內(nèi)容【解答】解:(1)∵點(diǎn)A(4,0)、B(0,4)在直線y=kx+b上,∴,解得:k=﹣1,b=4;(2)存在兩種情況:①如圖1,當(dāng)P在x軸的正半軸上時(shí),點(diǎn)O′恰好落在直線AB上,則OP=O'P,∠BO'P=∠BOP=90°,∵OB=OA=4,∴△AOB是等腰直角三角形,∴AB=4,∠OAB=45°,由折疊得:∠OBP=∠O'BP,BP=BP,∴△OBP≌△O'BP(AAS),∴O'B=OB=4,∴AO'=4﹣4,Rt△PO'A中,O'P=AO'=4﹣4=OP,∴S△BOP=OB?OP==8﹣8;②如圖所示:當(dāng)P在x軸的負(fù)半軸時(shí),由折疊得:∠PO'B=∠POB=90°,O'B=OB=4,∵∠BAO=45°,∴PO'=PO=AO'=4+4,∴S△BOP=OB?OP==8+8;(3)分4種情況:①當(dāng)BQ=QP時(shí),如圖2,P與O重合,此時(shí)點(diǎn)P的坐標(biāo)為(0,0);②當(dāng)BP=PQ時(shí),如圖3,∵∠BPC=45°,∴∠PQB=∠PBQ=22.5°,∵∠OAB=45°=∠PBQ+∠APB,∴∠APB=22.5°,∴∠ABP=∠APB,∴AP=AB=4,∴OP=4+4,∴P(4+4,0);③當(dāng)PB=PQ時(shí),如圖4,此時(shí)Q與C重合,∵∠BPC=45°,∴∠PBA=∠PCB=67.5°,△PCA中,∠APC=22.5°,∴∠APB=45+22.5°=67.5°,∴∠ABP=∠APB,∴AB=AP=4,∴OP=4﹣4,∴P(4﹣4,0);④當(dāng)PB=BQ時(shí),如圖5,此時(shí)Q與A重合,則P與A關(guān)于y軸對(duì)稱,∴此時(shí)P(﹣4,0);綜上,點(diǎn)P的坐標(biāo)是(0,0)或(4+4,0)或(4﹣4,0)或(﹣4,0).33.如圖,在平面直角坐標(biāo)系中,直線y=x+2與x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)C(2,m)為直線y=x+2上一點(diǎn),直線y=﹣x+b過(guò)點(diǎn)C.(1)求m和b的值;(2)直線y=﹣x+b與x軸交于點(diǎn)D,動(dòng)點(diǎn)P從點(diǎn)D開始以每秒1個(gè)單位的速度向x軸負(fù)方向運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.①若點(diǎn)P在線段DA上,且△ACP的面積為10,求t的值;②是否存在t的值,使△ACP為等腰三角形?若存在,直接寫出t的值;若不存在,請(qǐng)說(shuō)明理由.【答案】見試題解答內(nèi)容【解答】解:(1)把點(diǎn)C(2,m)代入直線y=x+2中得:m=2+2=4,∴點(diǎn)C(2,4),∵直線y=﹣x+b過(guò)點(diǎn)C,4=﹣+b,b=5;(2)①由題意得:PD=t,y=x+2中,當(dāng)y=0時(shí),x+2=0,x=﹣2,∴A(﹣2,0),y=﹣x+5中,當(dāng)y=0時(shí),﹣x+5=0,x=10,∴D(10,0),∴AD=10+2=12,即0≤t≤12,∵△ACP的面積為10,∴?4=10,t=7,則t的值7秒;②存在,分三種情況:i)當(dāng)AC=CP時(shí),如圖1,過(guò)C作CE⊥AD于E,∴PE=AE=4,∴PD=12﹣8=4,即t=4;ii)當(dāng)AC=AP時(shí),如圖2,AC=AP1=AP2==4,∴DP1=t=12﹣4,DP2=t=12+4;iii)當(dāng)AP=PC時(shí),如圖3,∵OA=OB=2∴∠BAO=45°∴∠CAP=∠ACP=45°∴∠APC=90°∴AP=PC=4∴PD=12﹣4=8,即t=8;綜上,當(dāng)t=4秒或(12﹣4)秒或(12+4)秒或8秒時(shí),△ACP為等腰三角形.34.如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+8分別交x軸、y軸于點(diǎn)A、B,將正比例函數(shù)y=2x的圖象沿y軸向下平移3個(gè)單位長(zhǎng)度得到直線l,直線l分別交x軸、y軸于點(diǎn)C、D,交直線AB于點(diǎn)E.(1)直接寫出直線l對(duì)應(yīng)的函數(shù)表達(dá)式;(2)在直線AB上存在點(diǎn)F(不與點(diǎn)E重合),使BF=BE,求點(diǎn)F的坐標(biāo);(3)在x軸上是否存在點(diǎn)P,使∠PDO=2∠PBO?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1)y=2x﹣3,(2)F(﹣4,11),(3)P(﹣4,0),P(4,0).【解答】解:(1)∵l是y=2x向下平移3個(gè)單位所得,∴l(xiāng):y=2x﹣3,(2)∵,解得:,∴E(4,5),∵BF=BE,且F不與E重合,∴F在y軸左側(cè),又∵y=﹣+8,∴當(dāng)x=0時(shí),y=8,∴B(0,8),∵B是EF的中點(diǎn),∴=0,=8,∴xF=﹣4,yF=11,∴F(﹣4,11).(3)由圖可知,作PG=PD,G在y軸上,∴∠PGO=∠PDO,又∵∠PDO=2∠PBO,∠PGO=∠PBO+∠BPG,∴∠BPG=∠PBG=∠PDO,∴BG=PG=PD,①P在x軸正半軸,∵l:y=2x﹣3,∴當(dāng)x0時(shí),y=﹣3,即D(0,﹣3),∴OD=3,∴OG=OD=3,則BG=8﹣3=5=PG,∴OP==4,∴P(4,0).②若P在x軸負(fù)半軸,與①同理,P(﹣4,0).綜上所述P(4,0),(﹣4,0).35.如圖,一次函數(shù)y=﹣x+4的圖象與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,過(guò)AB中點(diǎn)D的直線CD交x軸于點(diǎn)C,且經(jīng)過(guò)第一象限的點(diǎn)E(6,4).(1)求A,B兩點(diǎn)的坐標(biāo)及直線CD的函數(shù)表達(dá)式;(2)連接BE,求△DBE的面積;(3)連接DO,在坐標(biāo)平面內(nèi)找一點(diǎn)F,使得以點(diǎn)C,O,F(xiàn)為頂點(diǎn)的三角形與△COD全等,請(qǐng)直接寫出點(diǎn)F的坐標(biāo).【答案】見試題解答內(nèi)容【解答】解:(1)一次函數(shù)y=﹣x+4,令x=0,則y=4;令y=0,則x=4,∴A(0,4),B(4,0),∵D是AB的中點(diǎn),∴D(2,2),設(shè)直線CD的函數(shù)表達(dá)式為y=kx+b,則,解得,∴直線CD的函數(shù)表達(dá)式為y=x+1;(2)y=x+1,令y=0,則x=﹣2,∴C(﹣2,0),∴BC=2=4=6,∴△DBE的面積=△BCE的面積﹣△BCD的面積=×6×(4﹣2)=6;(3)如圖所示,當(dāng)點(diǎn)F在第一象限時(shí),點(diǎn)F與點(diǎn)D重合,即點(diǎn)F的坐標(biāo)為(2,2);當(dāng)點(diǎn)F在第二象限時(shí),點(diǎn)F的坐標(biāo)為(﹣4,2);當(dāng)點(diǎn)F在第三象限時(shí),點(diǎn)F的坐標(biāo)為(﹣4,﹣2);當(dāng)點(diǎn)F在第四象限時(shí),點(diǎn)F的坐標(biāo)為(2,﹣2).36.如圖,直線y=﹣x+4和直線y=2x+1相交于點(diǎn)A,分別與y軸交于B,C兩點(diǎn).(1)求點(diǎn)A的坐標(biāo);(2)在x軸上有一動(dòng)點(diǎn)P(a,0),過(guò)點(diǎn)P作x軸的垂線,分別交函數(shù)y=﹣x+4和y=2x+1的圖象于點(diǎn)D,E,若DE=6,求a的值.(3)在(2)的條件下,點(diǎn)Q為x軸負(fù)半軸上任意一點(diǎn),直接寫出△DEQ為等腰三角形時(shí)Q點(diǎn)的坐標(biāo).【答案】(1)A(1,3);(2)a的值為﹣1或3;(3)點(diǎn)Q的坐標(biāo)為(﹣﹣1,0)或(﹣﹣1,0)或(﹣+3,0).【解答】解:(1)令﹣x+4=2x+1,解得x=1,∴y=﹣1+4=3,∴A(1,3);(2)由題意可知,D(a,﹣a+4),E(a,2a+1),∴DE=|2a+1﹣(﹣a+4)|=6,解得a=﹣1或a=3,∴a的值為﹣1或3;(3)設(shè)點(diǎn)Q的橫坐標(biāo)為b,b<0,當(dāng)a=﹣1時(shí),D(﹣1,5),E(﹣1,﹣1),若△DEQ是等腰三角形,分以下三種情況:DE=DQ時(shí),=6,解得b=﹣﹣1或b=﹣1(不合題意,舍去);ED=EQ時(shí),=6,解得b=﹣﹣1或b=﹣1(不合題意,舍去);QD=QE,此時(shí)x軸上不存在符合題意的點(diǎn)D,舍去;當(dāng)a=3時(shí),D(3,1),E(3,7),若△DEQ是等腰三角形,分以下三種情況:DE=DQ時(shí),=6,解得b=﹣+3或b=+3(不合題意,舍去);ED=EQ時(shí),=6,無(wú)解;QD=QE,此時(shí)x軸上不存在符合題意的點(diǎn)D,舍去;故點(diǎn)Q的坐標(biāo)為(﹣﹣1,0)或(﹣﹣1,0)或(﹣+3,0).37.如圖,在平面直角坐標(biāo)系中,已知直線PA是一次函數(shù)y=x+m(m>0)的圖象,直線PB是一次函數(shù)y=﹣3x+n(n>m)的圖象,點(diǎn)P是兩直線的交點(diǎn),點(diǎn)A、B、C、Q分別是兩條直線與坐標(biāo)軸的交點(diǎn).(1)用m、n分別表示點(diǎn)A、B、P的坐標(biāo);(2)若四邊形PQOB的面積是,且CQ=AO,試求點(diǎn)P的坐標(biāo),并求出直線PA與PB的函數(shù)表達(dá)式;(3)在(2)的條件下,是否存在一點(diǎn)D,使以A、B、P、D為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1)A(﹣m,0),B(,0),P(,);(2)PA:y=x+4,PB:y=﹣3x+6;(3)(,)或(﹣,)或(﹣,﹣).【解答】解:(1)在直線y=x+m中,令y=0,得x=﹣m.∴點(diǎn)A(﹣m,0).在直線y=﹣3x+n中,令y=0,得x=.∴點(diǎn)B(,0).由,得,∴點(diǎn)P(,);(2)∵CQ=AO,∴(n﹣m)÷m=,整理得3m=2n,∴
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 英語(yǔ)專四專項(xiàng)試題及答案
- 細(xì)致入微的衛(wèi)生管理考試試題及答案
- 核酸培訓(xùn)考試試題及答案
- 育嬰師專業(yè)倫理考題及答案
- 藥師技能評(píng)估試題及答案
- 藥物研發(fā)的成本效益分析試題及答案
- 西醫(yī)臨床方案論證試題及答案
- 深入解析2024心理咨詢師考試試題及答案
- 藥學(xué)基礎(chǔ)重要考點(diǎn)試題及答案
- 行路難測(cè)試題及答案
- (2023年度)中央廚房、集體供餐配送單位食品安全全項(xiàng)目自查記錄表
- 土的滲透性完整版本
- 強(qiáng)化業(yè)務(wù)運(yùn)營(yíng)管理優(yōu)化業(yè)務(wù)流程的工作總結(jié)及計(jì)劃
- 獼猴桃果醬制作方法
- 逆變器行業(yè)營(yíng)銷策略方案
- 國(guó)民經(jīng)濟(jì)行業(yè)分類與代碼
- 網(wǎng)絡(luò)互連技術(shù)-管控IP數(shù)據(jù)通信ACL(訪問(wèn)控制列表)
- 幼兒園故事課件:《狼來(lái)了》
- 小學(xué)英語(yǔ)公開課The-Hug課件
- 第十章 思想政治教育的方法和藝術(shù)
- 堿柜治超大隊(duì)檢測(cè)站應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論