下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁,共1頁瀘州醫(yī)療器械職業(yè)學(xué)院
《機(jī)器學(xué)習(xí)與深度學(xué)習(xí)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、集成學(xué)習(xí)是一種提高機(jī)器學(xué)習(xí)性能的方法。以下關(guān)于集成學(xué)習(xí)的說法中,錯(cuò)誤的是:集成學(xué)習(xí)通過組合多個(gè)弱學(xué)習(xí)器來構(gòu)建一個(gè)強(qiáng)學(xué)習(xí)器。常見的集成學(xué)習(xí)方法有bagging、boosting和stacking等。那么,下列關(guān)于集成學(xué)習(xí)的說法錯(cuò)誤的是()A.bagging方法通過隨機(jī)采樣訓(xùn)練數(shù)據(jù)來構(gòu)建多個(gè)不同的學(xué)習(xí)器B.boosting方法通過逐步調(diào)整樣本權(quán)重來構(gòu)建多個(gè)不同的學(xué)習(xí)器C.stacking方法將多個(gè)學(xué)習(xí)器的預(yù)測(cè)結(jié)果作為新的特征輸入到一個(gè)元學(xué)習(xí)器中D.集成學(xué)習(xí)方法一定比單個(gè)學(xué)習(xí)器的性能更好2、假設(shè)我們要使用機(jī)器學(xué)習(xí)算法來預(yù)測(cè)股票價(jià)格的走勢(shì)。以下哪種數(shù)據(jù)特征可能對(duì)預(yù)測(cè)結(jié)果幫助較?。ǎ〢.公司的財(cái)務(wù)報(bào)表數(shù)據(jù)B.社交媒體上關(guān)于該股票的討論熱度C.股票代碼D.宏觀經(jīng)濟(jì)指標(biāo)3、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)文本進(jìn)行主題建模,以發(fā)現(xiàn)文本中的潛在主題。以下哪種方法常用于文本主題建模?()A.潛在狄利克雷分配(LDA)B.非負(fù)矩陣分解(NMF)C.概率潛在語義分析(PLSA)D.以上方法都常用4、假設(shè)正在研究一個(gè)時(shí)間序列預(yù)測(cè)問題,數(shù)據(jù)具有季節(jié)性和趨勢(shì)性。以下哪種模型可以同時(shí)處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以5、在機(jī)器學(xué)習(xí)中,強(qiáng)化學(xué)習(xí)是一種通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略的方法。假設(shè)一個(gè)機(jī)器人要通過強(qiáng)化學(xué)習(xí)來學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)化學(xué)習(xí)中的智能體根據(jù)環(huán)境的反饋(獎(jiǎng)勵(lì)或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法,通過估計(jì)狀態(tài)-動(dòng)作值來選擇最優(yōu)動(dòng)作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計(jì)算策略的梯度來更新策略參數(shù)D.強(qiáng)化學(xué)習(xí)不需要對(duì)環(huán)境進(jìn)行建模,只需要不斷嘗試不同的動(dòng)作就能找到最優(yōu)策略6、在一個(gè)工業(yè)生產(chǎn)的質(zhì)量控制場(chǎng)景中,需要通過機(jī)器學(xué)習(xí)來實(shí)時(shí)監(jiān)測(cè)產(chǎn)品的質(zhì)量參數(shù),及時(shí)發(fā)現(xiàn)異常。數(shù)據(jù)具有高維度、動(dòng)態(tài)變化和噪聲等特點(diǎn)。以下哪種監(jiān)測(cè)和分析方法可能是最合適的?()A.基于主成分分析(PCA)的降維方法,找出主要的影響因素,但對(duì)異常的敏感度可能較低B.采用孤立森林算法,專門用于檢測(cè)異常數(shù)據(jù)點(diǎn),但對(duì)于高維數(shù)據(jù)效果可能不穩(wěn)定C.運(yùn)用自組織映射(SOM)網(wǎng)絡(luò),能夠?qū)?shù)據(jù)進(jìn)行聚類和可視化,但實(shí)時(shí)性可能不足D.利用基于深度學(xué)習(xí)的自動(dòng)編碼器(Autoencoder),學(xué)習(xí)正常數(shù)據(jù)的模式,對(duì)異常數(shù)據(jù)有較好的檢測(cè)能力,但訓(xùn)練和計(jì)算成本較高7、機(jī)器學(xué)習(xí)中,批量歸一化(BatchNormalization)通常應(yīng)用于()A.輸入層B.隱藏層C.輸出層D.以上都可以8、某機(jī)器學(xué)習(xí)模型在訓(xùn)練過程中,損失函數(shù)的值一直沒有明顯下降。以下哪種可能是導(dǎo)致這種情況的原因?()A.學(xué)習(xí)率過高B.模型過于復(fù)雜C.數(shù)據(jù)預(yù)處理不當(dāng)D.以上原因都有可能9、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)視頻數(shù)據(jù)進(jìn)行分析和理解。以下哪種方法可以將視頻數(shù)據(jù)轉(zhuǎn)換為適合機(jī)器學(xué)習(xí)模型處理的形式?()A.提取關(guān)鍵幀B.視頻編碼C.光流計(jì)算D.以上方法都可以10、某研究需要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行降維,同時(shí)希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機(jī)鄰域嵌入(t-SNE)D.自編碼器11、當(dāng)處理不平衡數(shù)據(jù)集(即某個(gè)類別在數(shù)據(jù)中占比極?。r(shí),以下哪種方法可以提高模型對(duì)少數(shù)類別的識(shí)別能力()A.對(duì)多數(shù)類別進(jìn)行欠采樣B.對(duì)少數(shù)類別進(jìn)行過采樣C.調(diào)整分類閾值D.以上方法都可以12、在一個(gè)異常檢測(cè)問題中,例如檢測(cè)網(wǎng)絡(luò)中的異常流量,數(shù)據(jù)通常呈現(xiàn)出正常樣本遠(yuǎn)遠(yuǎn)多于異常樣本的情況。如果使用傳統(tǒng)的監(jiān)督學(xué)習(xí)算法,可能會(huì)因?yàn)閿?shù)據(jù)不平衡而導(dǎo)致模型對(duì)異常樣本的檢測(cè)能力不足。以下哪種方法更適合解決這類異常檢測(cè)問題?()A.構(gòu)建一個(gè)二分類模型,將數(shù)據(jù)分為正常和異常兩類B.使用無監(jiān)督學(xué)習(xí)算法,如基于密度的聚類算法,識(shí)別異常點(diǎn)C.對(duì)數(shù)據(jù)進(jìn)行平衡處理,如復(fù)制異常樣本,使正常和異常樣本數(shù)量相等D.以上方法都不適合,異常檢測(cè)問題無法通過機(jī)器學(xué)習(xí)解決13、考慮在一個(gè)圖像識(shí)別任務(wù)中,需要對(duì)不同的物體進(jìn)行分類,例如貓、狗、汽車等。為了提高模型的準(zhǔn)確性和泛化能力,以下哪種數(shù)據(jù)增強(qiáng)技術(shù)可能是有效的()A.隨機(jī)旋轉(zhuǎn)圖像B.增加圖像的亮度C.對(duì)圖像進(jìn)行模糊處理D.減小圖像的分辨率14、某研究需要對(duì)音頻信號(hào)進(jìn)行分類,例如區(qū)分不同的音樂風(fēng)格。以下哪種特征在音頻分類中經(jīng)常被使用?()A.頻譜特征B.時(shí)域特征C.時(shí)頻特征D.以上特征都常用15、假設(shè)要開發(fā)一個(gè)自然語言處理的系統(tǒng),用于文本情感分析,判斷一段文字是積極、消極還是中性??紤]到文本的多樣性和語義的復(fù)雜性。以下哪種技術(shù)和方法可能是最有效的?()A.基于詞袋模型的樸素貝葉斯分類器,計(jì)算簡(jiǎn)單,但忽略了詞序和上下文信息B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),能夠處理序列數(shù)據(jù),但可能存在梯度消失或爆炸問題C.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),改進(jìn)了RNN的長(zhǎng)期依賴問題,對(duì)長(zhǎng)文本處理能力較強(qiáng),但模型較復(fù)雜D.基于Transformer架構(gòu)的預(yù)訓(xùn)練語言模型,如BERT或GPT,具有強(qiáng)大的語言理解能力,但需要大量的計(jì)算資源和數(shù)據(jù)進(jìn)行微調(diào)16、對(duì)于一個(gè)高維度的數(shù)據(jù),在進(jìn)行特征選擇時(shí),以下哪種方法可以有效地降低維度()A.遞歸特征消除(RFE)B.皮爾遜相關(guān)系數(shù)C.方差分析(ANOVA)D.以上方法都可以17、想象一個(gè)圖像分類的競(jìng)賽,要求在有限的計(jì)算資源和時(shí)間內(nèi)達(dá)到最高的準(zhǔn)確率。以下哪種優(yōu)化策略可能是最關(guān)鍵的?()A.數(shù)據(jù)增強(qiáng),通過對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換增加數(shù)據(jù)量,但可能引入噪聲B.超參數(shù)調(diào)優(yōu),找到模型的最優(yōu)參數(shù)組合,但搜索空間大且耗時(shí)C.模型壓縮,減少模型參數(shù)和計(jì)算量,如剪枝和量化,但可能損失一定精度D.集成學(xué)習(xí),組合多個(gè)模型的預(yù)測(cè)結(jié)果,提高穩(wěn)定性和準(zhǔn)確率,但訓(xùn)練成本高18、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)文本進(jìn)行情感分類,同時(shí)考慮文本的上下文信息和語義關(guān)系。以下哪種模型可以更好地處理這種情況?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)與注意力機(jī)制的結(jié)合B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)與長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)的融合C.預(yù)訓(xùn)練語言模型(如BERT)微調(diào)D.以上模型都有可能19、假設(shè)正在開發(fā)一個(gè)用于圖像分割的機(jī)器學(xué)習(xí)模型。以下哪種損失函數(shù)通常用于評(píng)估圖像分割的效果?()A.交叉熵?fù)p失B.均方誤差損失C.Dice損失D.以上損失函數(shù)都可能使用20、假設(shè)正在開發(fā)一個(gè)智能推薦系統(tǒng),用于向用戶推薦個(gè)性化的商品。系統(tǒng)需要根據(jù)用戶的歷史購買記錄、瀏覽行為、搜索關(guān)鍵詞等信息來預(yù)測(cè)用戶的興趣和需求。在這個(gè)過程中,特征工程起到了關(guān)鍵作用。如果要將用戶的購買記錄轉(zhuǎn)化為有效的特征,以下哪種方法不太合適?()A.統(tǒng)計(jì)用戶購買每種商品的頻率B.對(duì)用戶購買的商品進(jìn)行分類,并計(jì)算各類別的比例C.直接將用戶購買的商品名稱作為特征輸入模型D.計(jì)算用戶購買商品的時(shí)間間隔和購買周期二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)什么是模型融合?常見的模型融合方法有哪些?2、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在旅游規(guī)劃中的路線推薦。3、(本題5分)說明機(jī)器學(xué)習(xí)在口腔醫(yī)學(xué)中的診斷輔助。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)利用GAN生成新的服裝設(shè)計(jì)。2、(本題5分)利用K近鄰(KNN)算法對(duì)葡萄酒的種類進(jìn)行分類。3、(本題5分)基于RNN對(duì)文本的自動(dòng)摘要進(jìn)行生成。4、(本題5分)通過酒店管理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)管理模式勞務(wù)派遣合同(2024年版)
- c 即時(shí)通訊課程設(shè)計(jì)
- 奧特曼模型課程設(shè)計(jì)
- 微波功率晶體管課程設(shè)計(jì)
- 小學(xué)智能制造課程設(shè)計(jì)
- 安全工程采礦課程設(shè)計(jì)
- proe課程設(shè)計(jì)摘要
- 幼兒園特色安靜課程設(shè)計(jì)
- 應(yīng)用寫作課程設(shè)計(jì)原則是
- 房屋估價(jià)課程設(shè)計(jì)
- 2025屆河北省石家莊市普通高中學(xué)校畢業(yè)年級(jí)教學(xué)質(zhì)量摸底檢測(cè)英語試卷
- 2024-2025學(xué)年人教版八年級(jí)上冊(cè)地理期末測(cè)試卷(一)(含答案)
- 十四五養(yǎng)老規(guī)劃政策解讀
- 北京市海淀區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期語文期末試卷
- 【MOOC】電工電子學(xué)-浙江大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- JJF(黔)-液體流量計(jì)在線校準(zhǔn)規(guī)范
- 《德勤企業(yè)評(píng)估指標(biāo)》課件
- 領(lǐng)導(dǎo)者的數(shù)字化領(lǐng)導(dǎo)力
- 2022-2023學(xué)年上海市徐匯區(qū)七年級(jí)(下)期末語文試卷
- 2024版白水泥供應(yīng)商合作與發(fā)展協(xié)議
- 2016新編膨脹螺栓國(guó)家標(biāo)準(zhǔn)規(guī)格表
評(píng)論
0/150
提交評(píng)論