版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題2代數(shù)式的概念、性質(zhì)與化簡問題
目錄
二、-短商做型回朝
【題型一】整式的混合運(yùn)算
【題型二】分解因式
【題型三】分式的性質(zhì)
【題型四】分式的化簡求值
【題型五】二次根式的概念
【題型六】二次根式的性質(zhì)
二、最新??碱}組練
熱點(diǎn)題型歸納
【題型一】整式的混合運(yùn)算
【典例分析】
(2022?江蘇徐州?統(tǒng)考中考真題)下列計算正確的是()
A.〃2/=/B.as-i-a4=a2
C.2a2+3a2=6tz4D.(-3〃)=—9a2
【提分秘籍】
基本規(guī)律
1.合并同類項(xiàng):把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng);合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前
各同類項(xiàng)的系數(shù)的和,且字母部分不變。
2.去括號法則:如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項(xiàng)的符號與原來的符號相同;如果括號外的
因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項(xiàng)的符號與原來的符號相反.
3.整式的乘除
①幕的運(yùn)算性質(zhì):
儲"=4加+"(祖,〃都是正整數(shù))
(呼=*(見〃都是正整數(shù))
(〃都是正整數(shù))
amn(a/0,機(jī),〃都是正整數(shù),且根〉n)
a°=l(tz豐0)
a~p=—(a0,P是正整數(shù))
ap
②單項(xiàng)式相乘:兩個單項(xiàng)式相乘,把系數(shù)、相同字母分別相乘,對于只在一個單項(xiàng)式里含有的字母,則連
同它的指數(shù)作為積的一個因式。
③單項(xiàng)式與多項(xiàng)式相乘:單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
④多項(xiàng)式與多項(xiàng)式相乘:一般地,多項(xiàng)式乘以多項(xiàng)式,先用一個多項(xiàng)式的每一項(xiàng)分別乘以另一個多項(xiàng)式的
每一項(xiàng),再把所得的積相加。
⑤平方差公式:(a+b)(a—6)="—〃
⑥完全平方公式:(。土bp=〃土2ab+b2
4.添括號法則在運(yùn)用乘法公式計算時,有時要在式子中添括號,添括號時,如果括號前面是正號,括到括
號里的各項(xiàng)都不變符號;如果括號前面是負(fù)號,括到括號里的各項(xiàng)都改變符號。
5.單項(xiàng)式相除兩個單項(xiàng)式相除,把系數(shù)與同底數(shù)幕分別相除作為商的因式,對于只在被除式里含有的字母,
則連同它的指數(shù)作為商的一個因式。
6.多項(xiàng)式除以單項(xiàng)式:多項(xiàng)式除以單項(xiàng)式,先把這個多項(xiàng)式的每一項(xiàng)除以這個單項(xiàng)式,再把所得的商相加。
【變式演練】
1.(2023?江蘇鹽城?統(tǒng)考一模)下列計算結(jié)果正確的是()
A.3尤4+2無2=51B.%84-x4=x1C.(-2/)=-6x9D.3x3-2x=6x4
2.(2023?江蘇蘇州?蘇州工業(yè)園區(qū)星灣學(xué)校??寄M預(yù)測)下列運(yùn)算正確的是()
A.2a2-3a=6a3B.(2a)3=2a3C.a64-a2=a8D.3a2+4a3=7a5
【題型二】分解因式
【典例分析】
(2022?江蘇常州?統(tǒng)考中考真題)分解因式:x2y+x/=
【提分秘籍】
基本規(guī)律
1.提取公因式法:ma+mb+me-m(a+b+c)
2.運(yùn)用公式法:平方差公式:a?-b?=(a+b)(a-b);完全平方公式:a2+2ab+b2=(a±Z))2
3.十字相乘法:x2+(a+b)x+ab=(x+a)(x+b)
4.因式分解的一般步驟
(1)如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式;
(2)提出公因式或無公因式可提,再考慮可否運(yùn)用公式或十字相乘法;
(3)對二次三項(xiàng)式,應(yīng)先嘗試用十字相乘法分解,不行的再用求根公式法;
(4)最后考慮用分組分解法及添、拆項(xiàng)法。
【變式演練】
1.(2023?江蘇泰州?一模)分解因式:2--8x+8=.
2.(2022?江蘇宿遷?統(tǒng)考一模)因式分解:ax2-2ax+a=.
【題型三】分式的性質(zhì)
【典例分析】
(2021?江蘇蘇州?統(tǒng)考中考真題)已知兩個不等于0的實(shí)數(shù)。、b滿足。+6=0,則2+?等于()
ab
A.-2B.-1C.1D.2
【提分秘籍】
基本規(guī)律
A
1.分式:設(shè)A、B表示兩個整式.如果B中含有字母,式子4就叫做分式。注意分母B的值不能為零,
B
否則分式?jīng)]有意義。
A
2.分式的基本性質(zhì):-黑。黑(.為不等于零的整式)
B
3.最簡分式:分子與分母沒有公因式的分式叫做最簡分式,如果分子分母有公因式,要進(jìn)行約分化簡。
【變式演練】
1.(2022?江蘇鹽城???级?若分式J有意義,則x的取值范圍是
3-x
2⑵6江蘇鹽城?統(tǒng)考一模)若分式力的值為。,則x的值為----------
【題型四】分式的化簡求值
【典例分析】
(2021?江蘇淮安?統(tǒng)考中考真題)先化簡,再求值:(一1+1)其中a=-4.
a-\a-1
【提分秘籍】
基本規(guī)律
1.分式的加減運(yùn)算:同分母的分式相加減,分母不變,把分子相加減。
2.異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法則進(jìn)行計算。
3.分式的乘法運(yùn)算:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
4.分式的除法運(yùn)算:兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘。
5.乘方運(yùn)算:分式的乘方,把分子分母分別乘方。
6.分式的混合運(yùn)算順序:先算乘方,再算乘除,最后加減,有括號先算括號里面的。
7.約分:把一個分式的分子和分母的公因式約去,這種變形稱為分式的約分。
8.通分:根據(jù)分式的基本性質(zhì),異分母的分式可以化為同分母的分式,這一過程稱為分式的通分。
【變式演練】
1.(2023?江蘇鹽城?統(tǒng)考一模)先化簡,再求值11-也產(chǎn)二,再從-1、0、1、3中選擇一個適
合的m的值代入求值.
2.(2023?江蘇鹽城?校聯(lián)考模擬預(yù)測)先化簡,再求值言/2)+』,其中“+2」2
【題型五】二次根式的概念
【典例分析】
(2022?江蘇常州?統(tǒng)考中考真題)若二次根式GT有意義,則實(shí)數(shù)x的取值范圍是()
A.x>1B.x>1C.x>0D.x>0
【提分秘籍】
基本規(guī)律
1.形如《(a20)的式子稱為二次根式。
2.??疾榈男问蕉胃接幸饬x的條件,即被開方數(shù)a>0,如果二次根式是分式的分母,則被開方數(shù)a〉0。
【變式演練】
1.(2023?江蘇蘇州?統(tǒng)考一模)若代數(shù)式有意義,則實(shí)數(shù)x的取值范圍是.
2.(2023?江蘇常州???家荒#┤羰阶邮絀Z在實(shí)數(shù)范圍內(nèi)有意義,則x的取值范圍是.
【題型六】二次根式的性質(zhì)
【典例分析】
(2021?江蘇南京?統(tǒng)考中考真題)計算說一工的結(jié)果是
【提分秘籍】
基本規(guī)律
1.>o(?>0);
2.(6)=a(a>0);
a(a>0)
-a(a<0)
4.積的算術(shù)平方根的性質(zhì):弧=??瓜aNO,b>0);
5.商的算術(shù)平方根的性質(zhì):
6.若a>b>0,則y[a>4b。
【變式演練】
1.(2023?江蘇蘇州?蘇州工業(yè)園區(qū)星灣學(xué)校??寄M預(yù)測)計算后斤的結(jié)果為()
B.-2D.±2
2.(2022?江蘇揚(yáng)州???寄M預(yù)測)當(dāng)x滿足時,式子/=丹有意義?
最新模考題組練
一、單選題
1.(2023?江蘇常州?統(tǒng)考一模)計算”2療的結(jié)果是()
A.m3B.2m3C.2m2D.4m3
2.(2023?江蘇南京?校聯(lián)考一模)計算(46丫的結(jié)果是()
165363
A.0b3B.abC.abD.ab
3.(2023?江蘇徐州?徐州市第十三中學(xué)??家荒#┫铝杏嬎阏_的是()
A.a2+a3=a5B.a2,a3=a6C.(—/)=a6D.a2=a
4.(2022?江蘇無錫?無錫市天一實(shí)驗(yàn)學(xué)校??家荒#┫铝懈魇街校苡闷椒讲罟椒纸庖蚴降氖牵ǎ?/p>
A.x?+4y2B.—x2+4j/2C.——2y+1D.-x2-4y2
5.(2021?江蘇無錫?江蘇省錫山高級中學(xué)實(shí)驗(yàn)學(xué)校??既#┫铝杏嬎阏_的是()
A.3Q5—B.3d3,a2=3a~[
C.(2")=6/D.(a—b)2=a2—b2
6.(2023-江蘇蘇州?蘇州中學(xué)校考模)已知孫=°,-=<,—=L則一——=()
x+y3y+z5z+x6xy+yz+zx
1i11
A.-B.-C.-D.-
4279
7.(2023?江蘇宿遷?一模)使分式—有意義的x的取值范圍是()
x-2
A.xwOB.x>2C.x<2D.xw2
8.(2022?江蘇徐州?校聯(lián)考一模)若K不在實(shí)數(shù)范圍內(nèi)有意義,則工的取值范圍是()
A.x>lB.x<lC.x>lD.x^l
二、填空題
9.(2023?江蘇南京?校聯(lián)考一模)計算炳;&的結(jié)果是
V8
10.(2023?江蘇徐州?校考一模)若j5-2x有意義,則x的取值范圍是.
11.(2023?江蘇鹽城?統(tǒng)考一模)若分式3二X有意義,則x的取值范圍為
x+2
12.(2022?江蘇揚(yáng)州?校考一模)約分:
a-9
13.(2023?江蘇無錫?校聯(lián)考一模)分解因式:3/-3=.
14.(2023-江蘇泰州?一模)分解因式:a3-6a2+9a=.
15.(2022?江蘇鹽城???级#┤绻麊雾?xiàng)式與-5x3/是同類項(xiàng),那么加+〃=.
16.(2022?江蘇鎮(zhèn)江?統(tǒng)考二模)已知:a與6互為相反數(shù),且|。-耳=[,則丁+)=
三、解答題
17.(2023?江蘇蘇州?校考一模)先化簡,再求值:x(x+2)-(x+l)(x-l),其中x=g.
18.(2023?江蘇宿遷?一模)先化簡,再求值:x(x+2)+(x+iy,其中工=-3
19.(2022?江蘇揚(yáng)州?統(tǒng)考二模)先化簡,再求值:(2_二],6:+9,其中0=右+3.
Va-lja-1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手房協(xié)議購房
- 分家協(xié)議范本2025
- 2024版二手房房屋買賣合同協(xié)議15篇
- 工作領(lǐng)域2 新居住項(xiàng)目產(chǎn)品與價格策70課件講解
- 2023年酒店、廚房設(shè)備用品項(xiàng)目融資計劃書
- 2023年消化系統(tǒng)用藥項(xiàng)目融資計劃書
- 2023年全自動金屬帶鋸床超精密加工機(jī)床項(xiàng)目融資計劃書
- 【虎嘯】2024年虎嘯年度洞察報告-3C家電行業(yè)
- 機(jī)械制圖考試題+答案
- 廣東省茂名市高州市2023-2024學(xué)年八年級上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- GB∕T 16754-2021 機(jī)械安全 急停功能 設(shè)計原則
- 中國美術(shù)學(xué)院學(xué)士學(xué)位論文規(guī)范化要求
- 中國美食英文介紹ppt課件
- 語文課外閱讀興趣小組活動記錄
- 幼兒園大班教案《中國茶》含反思
- 九年級物理第十六章《電壓和電阻》復(fù)習(xí)課教案
- 影響機(jī)械加工表面質(zhì)量的因素及采取的措施
- 人工關(guān)節(jié)置換技術(shù)管理制度、質(zhì)量保障措施、風(fēng)險評估及應(yīng)急預(yù)案資料
- 淺談窩工、停工、趕工索賠方式方法探討
- 舞臺燈光施工方案
- 中國石拱橋課件正稿
評論
0/150
提交評論