版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅肅蘭州市第五十一中學2025屆高考數(shù)學二模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若有2個零點,則實數(shù)的取值范圍為()A. B. C. D.2.設集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個 B.4個 C.5個 D.6個3.如圖,在中,,是上一點,若,則實數(shù)的值為()A. B. C. D.4.已知函數(shù),則方程的實數(shù)根的個數(shù)是()A. B. C. D.5.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3 C. D.26.已知i為虛數(shù)單位,則()A. B. C. D.7.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.8.洛書,古稱龜書,是陰陽五行術數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結構是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù).如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),則其和等于11的概率是().A. B. C. D.9.記單調遞增的等比數(shù)列的前項和為,若,,則()A. B. C. D.10.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.11.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調遞增區(qū)間為()A. B. C. D.12.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態(tài)分布(),若,則D.設是實數(shù),“”是“”的充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.請列舉用0,1,2,3這4個數(shù)字所組成的無重復數(shù)字且比210大的所有三位奇數(shù):___________.14.若將函數(shù)的圖象沿軸向右平移個單位后所得的圖象與的圖象關于軸對稱,則的最小值為________________.15.正四面體的一個頂點是圓柱上底面的圓心,另外三個頂點圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.16.已知實數(shù)滿約束條件,則的最大值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以線段為直徑的圓恰好經過坐標原點O?若存在,求出k的值;若不存在,請說明理由.18.(12分)誠信是立身之本,道德之基,我校學生會創(chuàng)設了“誠信水站”,既便于學生用水,又推進誠信教育,并用“”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個周期)的誠信數(shù)據(jù)統(tǒng)計:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計算表中十二周“水站誠信度”的平均數(shù);(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個周期的前兩周中隨機抽取兩周進行調研,計算恰有兩周是“高誠信度”的概率;(Ⅲ)已知學生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據(jù)已有數(shù)據(jù),說明兩次主題教育活動的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.19.(12分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大?。唬?)求的值.20.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)設點,若直線與曲線相交于、兩點,求的值21.(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設直線與平面相交于點,若,求的值.22.(10分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調遞增區(qū)間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
令,可得,要使得有兩個實數(shù)解,即和有兩個交點,結合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,,令,可得,當時,,函數(shù)在上單調遞增;當時,,函數(shù)在上單調遞減.當時,,若直線和有兩個交點,則.實數(shù)的取值范圍是.故選:C.【點睛】本題主要考查了根據(jù)零點求參數(shù)范圍,解題關鍵是掌握根據(jù)零點個數(shù)求參數(shù)的解法和根據(jù)導數(shù)求單調性的步驟,考查了分析能力和計算能力,屬于中檔題.2、A【解析】試題分析:,,所以,即集合中共有3個元素,故選A.考點:集合的運算.3、C【解析】
由題意,可根據(jù)向量運算法則得到(1﹣m),從而由向量分解的唯一性得出關于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關鍵,本題屬于基礎題.4、D【解析】
畫出函數(shù),將方程看作交點個數(shù),運用圖象判斷根的個數(shù).【詳解】畫出函數(shù)令有兩解,則分別有3個,2個解,故方程的實數(shù)根的個數(shù)是3+2=5個故選:D【點睛】本題綜合考查了函數(shù)的圖象的運用,分類思想的運用,數(shù)學結合的思想判斷方程的根,難度較大,屬于中檔題.5、D【解析】
根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸的交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線的定義,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.6、A【解析】
根據(jù)復數(shù)乘除運算法則,即可求解.【詳解】.故選:A.【點睛】本題考查復數(shù)代數(shù)運算,屬于基礎題題.7、D【解析】
根據(jù)拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.8、A【解析】
基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,屬于基礎題.9、C【解析】
先利用等比數(shù)列的性質得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進而得到數(shù)列的通項和前項和,根據(jù)后兩個公式可得正確的選項.【詳解】因為為等比數(shù)列,所以,故即,由可得或,因為為遞增數(shù)列,故符合.此時,所以或(舍,因為為遞增數(shù)列).故,.故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.10、A【解析】
聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關于的關系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關于的關系式是求解本題的關鍵;屬于中檔題、??碱}型.11、D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進而求出,再根據(jù)復合函數(shù)的單調性,即可求出結論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調遞增,所以函數(shù)的單調遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質,要熟記復合函數(shù)單調性判斷方法,屬于中檔題.12、D【解析】
由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態(tài)分布的性質可判斷選項C;或,利用集合間的包含關系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、231,321,301,1【解析】
分個位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個數(shù)字所組成的無重復數(shù)字比210大的所有三位奇數(shù)有:(1)當個位數(shù)字是1時,數(shù)字可以是231,321,301;(2)當個位數(shù)字是3時數(shù)字可以是1.故答案為:231,321,301,1【點睛】本題考查了分類計數(shù)法的應用,考查了學生分類討論,數(shù)學運算的能力,屬于基礎題.14、【解析】
由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖像的對稱性,求得的最小值.【詳解】解:將函數(shù)的圖象沿軸向右平移個單位長度,可得的圖象.根據(jù)圖象與的圖象關于軸對稱,可得,,,即時,的最小值為.故答案為:.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)圖像的對稱性,屬于基礎題.15、【解析】
設正四面體的棱長為,求出底面外接圓的半徑與高,代入體積公式求解.【詳解】解:設正四面體的棱長為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【點睛】本題主要考查多面體與旋轉體體積的求法,考查計算能力,屬于中檔題.16、8【解析】
畫出可行域和目標函數(shù),根據(jù)平移計算得到答案.【詳解】根據(jù)約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數(shù)表示直線在軸上的截距,由圖可知當經過點時截距最大,故的最大值為8.故答案為:.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,當時,以線段為直徑的圓恰好經過坐標原點O.【解析】
(1)設橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實數(shù)使得以線段為直徑的圓恰好經過坐標原點.設點,,,,將直線的方程代入,化簡,利用韋達定理,結合向量的數(shù)量積為0,轉化為:.求解即可.【詳解】解:(1)設橢圓的焦半距為c,則由題設,得,解得,所以,故所求橢圓C的方程為(2)存在實數(shù)k使得以線段為直徑的圓恰好經過坐標原點O.理由如下:設點,,將直線的方程代入,并整理,得.(*)則,因為以線段為直徑的圓恰好經過坐標原點O,所以,即.又,于是,解得,經檢驗知:此時(*)式的,符合題意.所以當時,以線段為直徑的圓恰好經過坐標原點O【點睛】本題考查橢圓方程的求法,橢圓的簡單性質,直線與橢圓位置關系的綜合應用,考查計算能力以及轉化思想的應用,屬于中檔題.18、(Ⅰ);(Ⅱ);(Ⅲ)兩次活動效果均好,理由詳見解析.【解析】
(Ⅰ)結合表中的數(shù)據(jù),代入平均數(shù)公式求解即可;(Ⅱ)設抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周,則有兩周為“高誠信度”事件為,利用列舉法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率計算公式求解即可;(Ⅲ)結合表中的數(shù)據(jù)判斷即可.【詳解】(Ⅰ)表中十二周“水站誠信度”的平均數(shù).(Ⅱ)設抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周均為“高誠信度”事件為,總的基本事件為共15種,事件所包含的基本事件為共10種,由古典概型概率計算公式可得,.(Ⅲ)兩次活動效果均好.理由:活動舉辦后,“水站誠信度'由和看出,后繼一周都有提升.【點睛】本題考查平均數(shù)公式和古典概型概率計算公式;考查運算求解能力;利用列舉法正確列舉出所有的基本事件是求古典概型概率的關鍵;屬于中檔題、常考題型.19、(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點睛:本題主要考查正弦定理邊角互化及余弦定理的應用與特殊角的三角函數(shù),屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關的問題時,還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應用.20、(1)的普通方程為,的直角坐標方程為;(2).【解析】
(1)在曲線的參數(shù)方程中消去參數(shù)可得出曲線的普通方程,利用兩角和的正弦公式以及可將直線的極坐標方程化為普通方程;(2)設直線的參數(shù)方程為(為參數(shù)),并設點、所對應的參數(shù)分別為、,利用韋達定理可求得的值.【詳解】(1)由,得,,曲線的普通方程為,由,得,直線的直角坐標方程為;(2)設直線的參數(shù)方程為(為參數(shù)),代入,得,則,設、兩點對應參數(shù)分別為、,,,,,.【點睛】本題考查了參數(shù)方程、極坐標方程與普通方程之間的轉化,同時也考查了直線參數(shù)方程幾何意義的應用,考查計算能力,屬于中等題.21、(1)證明見解析(2)(3)【解析】
(1)取中點為,連接,由等邊三角形性質可得,再由面面垂直的性質可得,根據(jù)平行直線的性質可得,進而求證;(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,由點在棱上,可設,即可得到,再求得平面的法向量,進而利用數(shù)量積求解;(3)設,,則,求得,,即可求得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年食堂承包經營員工勞動權益保障協(xié)議3篇
- 2025年食堂蔬菜糧油智能化管理系統(tǒng)合作協(xié)議3篇
- 2025年度個人房產托管服務合同范本4篇
- 2025版高科技園區(qū)門衛(wèi)值班人員崗位聘用合同協(xié)議4篇
- 2025年度個人虛擬現(xiàn)實體驗服務合同范本4篇
- 物業(yè)服務公司2025年度合同管理制度解讀6篇
- 個體損害和解合同格式(2024年版)版B版
- 2025年度生態(tài)園林蟲害生物防治技術合同范本3篇
- 2025年度數(shù)碼產品代銷合同范本
- 2025年食堂食堂食材采購及加工配送協(xié)議3篇
- 割接方案的要點、難點及采取的相應措施
- 2025年副護士長競聘演講稿(3篇)
- 2024年08月北京中信銀行北京分行社會招考(826)筆試歷年參考題庫附帶答案詳解
- 原發(fā)性腎病綜合征護理
- 2024年高考英語復習(新高考專用)完形填空之詞匯復現(xiàn)
- 【京東物流配送模式探析及發(fā)展對策探究開題報告文獻綜述4100字】
- 施工現(xiàn)場工程令
- 藥物經濟學評價模型構建
- Daniel-Defoe-Robinson-Crusoe-笛福和魯濱遜漂流記全英文PPT
- 第一章威爾遜公共行政管理理論
- 外科護理(高職護理專業(yè))PPT完整全套教學課件
評論
0/150
提交評論