江西洪州職業(yè)學(xué)院《機(jī)器學(xué)習(xí)導(dǎo)論與工程應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
江西洪州職業(yè)學(xué)院《機(jī)器學(xué)習(xí)導(dǎo)論與工程應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
江西洪州職業(yè)學(xué)院《機(jī)器學(xué)習(xí)導(dǎo)論與工程應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
江西洪州職業(yè)學(xué)院《機(jī)器學(xué)習(xí)導(dǎo)論與工程應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
江西洪州職業(yè)學(xué)院《機(jī)器學(xué)習(xí)導(dǎo)論與工程應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁江西洪州職業(yè)學(xué)院

《機(jī)器學(xué)習(xí)導(dǎo)論與工程應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在一個分類問題中,如果類別之間的邊界不清晰,以下哪種算法可能能夠更好地處理這種情況?()A.支持向量機(jī)B.決策樹C.樸素貝葉斯D.隨機(jī)森林2、假設(shè)正在開發(fā)一個用于圖像分割的機(jī)器學(xué)習(xí)模型。以下哪種損失函數(shù)通常用于評估圖像分割的效果?()A.交叉熵?fù)p失B.均方誤差損失C.Dice損失D.以上損失函數(shù)都可能使用3、在一個強(qiáng)化學(xué)習(xí)場景中,智能體在探索新的策略和利用已有的經(jīng)驗(yàn)之間需要進(jìn)行平衡。如果智能體過于傾向于探索,可能會導(dǎo)致效率低下;如果過于傾向于利用已有經(jīng)驗(yàn),可能會錯過更好的策略。以下哪種方法可以有效地控制這種平衡?()A.調(diào)整學(xué)習(xí)率B.調(diào)整折扣因子C.使用ε-貪婪策略,控制探索的概率D.增加訓(xùn)練的輪數(shù)4、在處理不平衡數(shù)據(jù)集時,以下關(guān)于解決數(shù)據(jù)不平衡問題的方法,哪一項是不正確的?()A.過采樣方法通過增加少數(shù)類樣本的數(shù)量來平衡數(shù)據(jù)集B.欠采樣方法通過減少多數(shù)類樣本的數(shù)量來平衡數(shù)據(jù)集C.合成少數(shù)類過采樣技術(shù)(SMOTE)通過合成新的少數(shù)類樣本來平衡數(shù)據(jù)集D.數(shù)據(jù)不平衡對模型性能沒有影響,不需要采取任何措施來處理5、在評估機(jī)器學(xué)習(xí)模型的性能時,通常會使用多種指標(biāo)。假設(shè)我們有一個二分類模型,用于預(yù)測患者是否患有某種疾病。以下關(guān)于模型評估指標(biāo)的描述,哪一項是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準(zhǔn)確B.召回率是被正確預(yù)測為正例的樣本數(shù)占實(shí)際正例樣本數(shù)的比例C.F1分?jǐn)?shù)是準(zhǔn)確率和召回率的調(diào)和平均值,綜合考慮了模型的準(zhǔn)確性和全面性D.均方誤差(MSE)常用于二分類問題的模型評估,值越小表示模型性能越好6、對于一個高維度的數(shù)據(jù),在進(jìn)行特征選擇時,以下哪種方法可以有效地降低維度()A.遞歸特征消除(RFE)B.皮爾遜相關(guān)系數(shù)C.方差分析(ANOVA)D.以上方法都可以7、強(qiáng)化學(xué)習(xí)中的智能體通過與環(huán)境的交互來學(xué)習(xí)最優(yōu)策略。以下關(guān)于強(qiáng)化學(xué)習(xí)的說法中,錯誤的是:強(qiáng)化學(xué)習(xí)的目標(biāo)是最大化累計獎勵。智能體根據(jù)當(dāng)前狀態(tài)選擇動作,環(huán)境根據(jù)動作反饋新的狀態(tài)和獎勵。那么,下列關(guān)于強(qiáng)化學(xué)習(xí)的說法錯誤的是()A.Q學(xué)習(xí)是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法B.策略梯度算法是一種基于策略的強(qiáng)化學(xué)習(xí)算法C.強(qiáng)化學(xué)習(xí)算法只適用于離散動作空間,對于連續(xù)動作空間不適用D.強(qiáng)化學(xué)習(xí)可以應(yīng)用于機(jī)器人控制、游戲等領(lǐng)域8、考慮一個時間序列預(yù)測問題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動平均(SARIMA)模型D.以上都可以9、某機(jī)器學(xué)習(xí)項目需要對文本進(jìn)行主題建模,以發(fā)現(xiàn)文本中的潛在主題。以下哪種方法常用于文本主題建模?()A.潛在狄利克雷分配(LDA)B.非負(fù)矩陣分解(NMF)C.概率潛在語義分析(PLSA)D.以上方法都常用10、在機(jī)器學(xué)習(xí)中,特征工程是非常重要的一步。假設(shè)我們要預(yù)測一個城市的空氣質(zhì)量,有許多相關(guān)的原始數(shù)據(jù),如氣象數(shù)據(jù)、交通流量、工廠排放等。以下關(guān)于特征工程的描述,哪一項是不準(zhǔn)確的?()A.對原始數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,可以使不同特征在數(shù)值上具有可比性B.從原始數(shù)據(jù)中提取新的特征,例如計算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對目標(biāo)變量有顯著影響的特征,去除冗余或無關(guān)的特征D.特征工程只需要在模型訓(xùn)練之前進(jìn)行一次,后續(xù)不需要再進(jìn)行調(diào)整和優(yōu)化11、當(dāng)使用支持向量機(jī)(SVM)進(jìn)行分類任務(wù)時,如果數(shù)據(jù)不是線性可分的,通常會采用以下哪種方法()A.增加樣本數(shù)量B.降低維度C.使用核函數(shù)將數(shù)據(jù)映射到高維空間D.更換分類算法12、假設(shè)正在研究一個文本生成任務(wù),例如生成新聞文章。以下哪種深度學(xué)習(xí)模型架構(gòu)在自然語言生成中表現(xiàn)出色?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)B.長短時記憶網(wǎng)絡(luò)(LSTM)C.門控循環(huán)單元(GRU)D.以上模型都常用于文本生成13、在一個金融風(fēng)險預(yù)測的項目中,需要根據(jù)客戶的信用記錄、收入水平、負(fù)債情況等多種因素來預(yù)測其違約的可能性。同時,要求模型能夠適應(yīng)不斷變化的市場環(huán)境和新的數(shù)據(jù)特征。以下哪種模型架構(gòu)和訓(xùn)練策略可能是最恰當(dāng)?shù)模浚ǎ〢.構(gòu)建一個線性回歸模型,簡單直觀,易于解釋和更新,但可能無法處理復(fù)雜的非線性關(guān)系B.選擇邏輯回歸模型,結(jié)合正則化技術(shù)防止過擬合,能夠處理二分類問題,但對于多因素的復(fù)雜關(guān)系表達(dá)能力有限C.建立多層感知機(jī)神經(jīng)網(wǎng)絡(luò),通過調(diào)整隱藏層的數(shù)量和節(jié)點(diǎn)數(shù)來捕捉復(fù)雜關(guān)系,但訓(xùn)練難度較大,容易過擬合D.采用基于隨機(jī)森林的集成學(xué)習(xí)方法,結(jié)合特征選擇和超參數(shù)調(diào)優(yōu),能夠處理多因素和非線性關(guān)系,且具有較好的穩(wěn)定性和泛化能力14、在分類問題中,如果正負(fù)樣本比例嚴(yán)重失衡,以下哪種評價指標(biāo)更合適?()A.準(zhǔn)確率B.召回率C.F1值D.均方誤差15、想象一個圖像分類的競賽,要求在有限的計算資源和時間內(nèi)達(dá)到最高的準(zhǔn)確率。以下哪種優(yōu)化策略可能是最關(guān)鍵的?()A.數(shù)據(jù)增強(qiáng),通過對原始數(shù)據(jù)進(jìn)行隨機(jī)變換增加數(shù)據(jù)量,但可能引入噪聲B.超參數(shù)調(diào)優(yōu),找到模型的最優(yōu)參數(shù)組合,但搜索空間大且耗時C.模型壓縮,減少模型參數(shù)和計算量,如剪枝和量化,但可能損失一定精度D.集成學(xué)習(xí),組合多個模型的預(yù)測結(jié)果,提高穩(wěn)定性和準(zhǔn)確率,但訓(xùn)練成本高16、機(jī)器學(xué)習(xí)在自然語言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法中,錯誤的是:機(jī)器學(xué)習(xí)可以用于文本分類、情感分析、機(jī)器翻譯等任務(wù)。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學(xué)習(xí)模型等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法錯誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結(jié)構(gòu)B.TF-IDF可以衡量一個詞在文檔中的重要性C.深度學(xué)習(xí)模型在自然語言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計算資源D.機(jī)器學(xué)習(xí)在自然語言處理中的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和發(fā)展17、在構(gòu)建一個圖像識別模型時,需要對圖像數(shù)據(jù)進(jìn)行預(yù)處理和增強(qiáng)。如果圖像存在光照不均、噪聲和模糊等問題,以下哪種預(yù)處理和增強(qiáng)技術(shù)組合可能最為有效?()A.直方圖均衡化、中值濾波和銳化B.灰度變換、高斯濾波和圖像翻轉(zhuǎn)C.色彩空間轉(zhuǎn)換、均值濾波和圖像縮放D.對比度拉伸、雙邊濾波和圖像旋轉(zhuǎn)18、在一個異常檢測任務(wù)中,如果異常樣本的特征與正常樣本有很大的不同,以下哪種方法可能效果較好?()A.基于距離的方法,如K近鄰B.基于密度的方法,如DBSCANC.基于聚類的方法,如K-MeansD.以上都不行19、某研究團(tuán)隊正在開發(fā)一個用于醫(yī)療圖像診斷的機(jī)器學(xué)習(xí)模型,需要提高模型對小病變的檢測能力。以下哪種方法可以嘗試?()A.增加數(shù)據(jù)增強(qiáng)的強(qiáng)度B.使用更復(fù)雜的模型架構(gòu)C.引入注意力機(jī)制D.以上方法都可以20、特征工程是機(jī)器學(xué)習(xí)中的重要環(huán)節(jié)。以下關(guān)于特征工程的說法中,錯誤的是:特征工程包括特征提取、特征選擇和特征轉(zhuǎn)換等步驟。目的是從原始數(shù)據(jù)中提取出有效的特征,提高模型的性能。那么,下列關(guān)于特征工程的說法錯誤的是()A.特征提取是從原始數(shù)據(jù)中自動學(xué)習(xí)特征表示的過程B.特征選擇是從眾多特征中選擇出對模型性能有重要影響的特征C.特征轉(zhuǎn)換是將原始特征進(jìn)行變換,以提高模型的性能D.特征工程只在傳統(tǒng)的機(jī)器學(xué)習(xí)算法中需要,深度學(xué)習(xí)算法不需要進(jìn)行特征工程21、在一個文本分類任務(wù)中,使用了樸素貝葉斯算法。樸素貝葉斯算法基于貝葉斯定理,假設(shè)特征之間相互獨(dú)立。然而,在實(shí)際的文本數(shù)據(jù)中,特征之間往往存在一定的相關(guān)性。以下關(guān)于樸素貝葉斯算法在文本分類中的應(yīng)用,哪一項是正確的?()A.由于特征不獨(dú)立的假設(shè),樸素貝葉斯算法在文本分類中效果很差B.盡管存在特征相關(guān)性,樸素貝葉斯算法在許多文本分類任務(wù)中仍然表現(xiàn)良好C.為了提高性能,需要對文本數(shù)據(jù)進(jìn)行特殊處理,使其滿足特征獨(dú)立的假設(shè)D.樸素貝葉斯算法只適用于特征完全獨(dú)立的數(shù)據(jù)集,不適用于文本分類22、假設(shè)要對大量的文本數(shù)據(jù)進(jìn)行主題建模,以發(fā)現(xiàn)潛在的主題和模式。以下哪種技術(shù)可能是最有效的?()A.潛在狄利克雷分配(LDA),基于概率模型,能夠發(fā)現(xiàn)文本中的潛在主題,但對短文本效果可能不好B.非負(fù)矩陣分解(NMF),將文本矩陣分解為低秩矩陣,但解釋性相對較弱C.基于詞向量的聚類方法,如K-Means聚類,但依賴于詞向量的質(zhì)量和表示D.層次聚類方法,能夠展示主題的層次結(jié)構(gòu),但計算復(fù)雜度較高23、考慮一個回歸問題,我們要預(yù)測房價。數(shù)據(jù)集包含了房屋的面積、房間數(shù)量、地理位置等特征以及對應(yīng)的房價。在選擇評估指標(biāo)來衡量模型的性能時,需要綜合考慮模型的準(zhǔn)確性和誤差的性質(zhì)。以下哪個評估指標(biāo)不僅考慮了預(yù)測值與真實(shí)值的偏差,還考慮了偏差的平方?()A.平均絕對誤差(MAE)B.均方誤差(MSE)C.決定系數(shù)(R2)D.準(zhǔn)確率(Accuracy)24、在機(jī)器學(xué)習(xí)中,強(qiáng)化學(xué)習(xí)是一種通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略的方法。假設(shè)一個機(jī)器人要通過強(qiáng)化學(xué)習(xí)來學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項是不正確的?()A.強(qiáng)化學(xué)習(xí)中的智能體根據(jù)環(huán)境的反饋(獎勵或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法,通過估計狀態(tài)-動作值來選擇最優(yōu)動作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計算策略的梯度來更新策略參數(shù)D.強(qiáng)化學(xué)習(xí)不需要對環(huán)境進(jìn)行建模,只需要不斷嘗試不同的動作就能找到最優(yōu)策略25、在一個分類問題中,如果數(shù)據(jù)集中存在噪聲和錯誤標(biāo)簽,以下哪種模型可能對這類噪聲具有一定的魯棒性?()A.集成學(xué)習(xí)模型B.深度學(xué)習(xí)模型C.支持向量機(jī)D.決策樹26、在機(jī)器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)是一種常見的學(xué)習(xí)方式。假設(shè)我們要使用監(jiān)督學(xué)習(xí)算法來預(yù)測房價,給定了大量的房屋特征(如面積、房間數(shù)量、地理位置等)以及對應(yīng)的房價數(shù)據(jù)。以下關(guān)于監(jiān)督學(xué)習(xí)在這個任務(wù)中的描述,哪一項是不準(zhǔn)確的?()A.可以使用線性回歸算法,建立房屋特征與房價之間的線性關(guān)系模型B.決策樹算法可以根據(jù)房屋特征的不同取值來劃分決策節(jié)點(diǎn),最終預(yù)測房價C.支持向量機(jī)通過尋找一個最優(yōu)的超平面來對房屋數(shù)據(jù)進(jìn)行分類,從而預(yù)測房價D.無監(jiān)督學(xué)習(xí)算法如K-Means聚類算法可以直接用于房價的預(yù)測,無需對數(shù)據(jù)進(jìn)行標(biāo)注27、在一個強(qiáng)化學(xué)習(xí)問題中,智能體需要在環(huán)境中通過不斷嘗試和學(xué)習(xí)來優(yōu)化其策略。如果環(huán)境具有高維度和連續(xù)的動作空間,以下哪種算法通常被用于解決這類問題?()A.Q-learningB.SARSAC.DeepQNetwork(DQN)D.PolicyGradient算法28、某研究團(tuán)隊正在開發(fā)一個用于疾病預(yù)測的機(jī)器學(xué)習(xí)模型,需要考慮模型的魯棒性和穩(wěn)定性。以下哪種方法可以用于評估模型在不同數(shù)據(jù)集和條件下的性能?()A.交叉驗(yàn)證B.留一法C.自助法D.以上方法都可以29、考慮一個圖像分類任務(wù),使用深度學(xué)習(xí)模型進(jìn)行訓(xùn)練。在訓(xùn)練過程中,如果發(fā)現(xiàn)模型在訓(xùn)練集上的準(zhǔn)確率很高,但在驗(yàn)證集上的準(zhǔn)確率較低,可能存在以下哪種問題?()A.模型欠擬合,需要增加模型的復(fù)雜度B.數(shù)據(jù)預(yù)處理不當(dāng),需要重新處理數(shù)據(jù)C.模型過擬合,需要采取正則化措施D.訓(xùn)練數(shù)據(jù)量不足,需要增加更多的數(shù)據(jù)30、在機(jī)器學(xué)習(xí)中,數(shù)據(jù)預(yù)處理是非常重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)預(yù)處理的說法中,錯誤的是:數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)歸一化、數(shù)據(jù)標(biāo)準(zhǔn)化等步驟。目的是提高數(shù)據(jù)的質(zhì)量和可用性。那么,下列關(guān)于數(shù)據(jù)預(yù)處理的說法錯誤的是()A.數(shù)據(jù)清洗可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)歸一化將數(shù)據(jù)映射到[0,1]區(qū)間,便于不同特征之間的比較C.數(shù)據(jù)標(biāo)準(zhǔn)化將數(shù)據(jù)的均值和標(biāo)準(zhǔn)差調(diào)整為特定的值D.數(shù)據(jù)預(yù)處理對模型的性能影響不大,可以忽略二、論述題(本大題共5個小題,共25分)1、(本題5分)探討機(jī)器學(xué)習(xí)在智能農(nóng)業(yè)中的精準(zhǔn)施肥應(yīng)用。機(jī)器學(xué)習(xí)可以實(shí)現(xiàn)精準(zhǔn)施肥,提高農(nóng)業(yè)生產(chǎn)效率,分析其應(yīng)用方法和效益。2、(本題5分)論述機(jī)器學(xué)習(xí)在智能交通信號控制中的應(yīng)用前景。討論交通流量優(yōu)化、信號配時調(diào)整、擁堵緩解等方面的機(jī)器學(xué)習(xí)方法和挑戰(zhàn)。3、(本題5分)結(jié)合實(shí)際應(yīng)用,論述機(jī)器學(xué)習(xí)在物流服務(wù)質(zhì)量提升中的作用。分析客戶滿意度評估、服務(wù)質(zhì)量監(jiān)測、投訴處理等方面的機(jī)器學(xué)習(xí)技術(shù)和應(yīng)用前景。4、(本題5分)分析機(jī)器學(xué)習(xí)中的異常檢測算法。包括基于統(tǒng)計的方法、基于機(jī)器學(xué)習(xí)的方法等,討論在實(shí)際應(yīng)用中的挑戰(zhàn)。5、(本題5分)分析機(jī)器學(xué)習(xí)在金融市場預(yù)測中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論