江門市重點(diǎn)中學(xué)2025屆高三第一次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
江門市重點(diǎn)中學(xué)2025屆高三第一次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
江門市重點(diǎn)中學(xué)2025屆高三第一次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
江門市重點(diǎn)中學(xué)2025屆高三第一次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
江門市重點(diǎn)中學(xué)2025屆高三第一次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江門市重點(diǎn)中學(xué)2025屆高三第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或2.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則()A. B. C. D.3.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.4.?dāng)?shù)列滿足:,,,為其前n項(xiàng)和,則()A.0 B.1 C.3 D.45.在平面直角坐標(biāo)系中,已知點(diǎn),,若動(dòng)點(diǎn)滿足,則的取值范圍是()A. B.C. D.6.已知,滿足約束條件,則的最大值為A. B. C. D.7.設(shè),,,則、、的大小關(guān)系為()A. B. C. D.8.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長(zhǎng)度的集合,則()A.B.C.D.9.已知命題,,則是()A., B.,.C., D.,.10.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.12811.某設(shè)備使用年限x(年)與所支出的維修費(fèi)用y(萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計(jì)劃維修費(fèi)用超過(guò)15萬(wàn)元將該設(shè)備報(bào)廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年12.已知雙曲線的一條漸近線經(jīng)過(guò)圓的圓心,則雙曲線的離心率為()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知為偶函數(shù),當(dāng)時(shí),,則__________.14.如圖是一個(gè)算法的偽代碼,運(yùn)行后輸出的值為_(kāi)__________.15.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬.如圖,若四棱錐為陽(yáng)馬,側(cè)棱底面,且,,設(shè)該陽(yáng)馬的外接球半徑為,內(nèi)切球半徑為,則__________.16.已知函數(shù),若恒成立,則的取值范圍是___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點(diǎn),是上異于,的點(diǎn),.(1)證明:平面平面;(2)若點(diǎn)為半圓弧上的一個(gè)三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.18.(12分)下表是某公司2018年5~12月份研發(fā)費(fèi)用(百萬(wàn)元)和產(chǎn)品銷量(萬(wàn)臺(tái))的具體數(shù)據(jù):月份56789101112研發(fā)費(fèi)用(百萬(wàn)元)2361021131518產(chǎn)品銷量(萬(wàn)臺(tái))1122.563.53.54.5(Ⅰ)根據(jù)數(shù)據(jù)可知與之間存在線性相關(guān)關(guān)系,求出與的線性回歸方程(系數(shù)精確到0.01);(Ⅱ)該公司制定了如下獎(jiǎng)勵(lì)制度:以(單位:萬(wàn)臺(tái))表示日銷售,當(dāng)時(shí),不設(shè)獎(jiǎng);當(dāng)時(shí),每位員工每日獎(jiǎng)勵(lì)200元;當(dāng)時(shí),每位員工每日獎(jiǎng)勵(lì)300元;當(dāng)時(shí),每位員工每日獎(jiǎng)勵(lì)400元.現(xiàn)已知該公司某月份日銷售(萬(wàn)臺(tái))服從正態(tài)分布(其中是2018年5-12月產(chǎn)品銷售平均數(shù)的二十分之一),請(qǐng)你估計(jì)每位員工該月(按30天計(jì)算)獲得獎(jiǎng)勵(lì)金額總數(shù)大約多少元.參考數(shù)據(jù):,,,,參考公式:相關(guān)系數(shù),其回歸直線中的,若隨機(jī)變量服從正態(tài)分布,則,.19.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點(diǎn),與平面所成的角的正弦值為,求的長(zhǎng).20.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中.若問(wèn)題中的正整數(shù)存在,求的值;若不存在,說(shuō)明理由.設(shè)正數(shù)等比數(shù)列的前項(xiàng)和為,是等差數(shù)列,__________,,,,是否存在正整數(shù),使得成立?21.(12分)在直角坐標(biāo)系中,是過(guò)定點(diǎn)且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線的極坐標(biāo)方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;(2)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍.22.(10分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設(shè)為棱的中點(diǎn),當(dāng)四面體的體積取得最大值時(shí),求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點(diǎn)在x、y軸上兩種情況討論,進(jìn)而求得雙曲線的離心率.【詳解】設(shè)雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點(diǎn)在x、y軸上兩種情況討論:

①當(dāng)焦點(diǎn)在x軸上時(shí)有:②當(dāng)焦點(diǎn)在y軸上時(shí)有:∴求得雙曲線的離心率2或.

故選:A.【點(diǎn)睛】本小題主要考查直線與圓的位置關(guān)系、雙曲線的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關(guān)系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯(cuò)誤答案.2、B【解析】

設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.3、C【解析】

畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長(zhǎng)為2,

該幾何體的表面積:.故選C.【點(diǎn)睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵.4、D【解析】

用去換中的n,得,相加即可找到數(shù)列的周期,再利用計(jì)算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項(xiàng)分別為1,2,1,-1,-2,-1,所以,.故選:D.【點(diǎn)睛】本題考查周期數(shù)列的應(yīng)用,在求時(shí),先算出一個(gè)周期的和即,再將表示成即可,本題是一道中檔題.5、D【解析】

設(shè)出的坐標(biāo)為,依據(jù)題目條件,求出點(diǎn)的軌跡方程,寫出點(diǎn)的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結(jié)果.【詳解】設(shè),則∵,∴∴∴為點(diǎn)的軌跡方程∴點(diǎn)的參數(shù)方程為(為參數(shù))則由向量的坐標(biāo)表達(dá)式有:又∵∴故選:D【點(diǎn)睛】考查學(xué)生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關(guān)點(diǎn)法;④參數(shù)法;⑤待定系數(shù)法6、D【解析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價(jià)于,作直線,向上平移,易知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí)最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.7、D【解析】

因?yàn)?,,所以且在上單調(diào)遞減,且所以,所以,又因?yàn)椋?,所以,所?故選:D.【點(diǎn)睛】本題考查利用指對(duì)數(shù)函數(shù)的單調(diào)性比較指對(duì)數(shù)的大小,難度一般.除了可以直接利用單調(diào)性比較大小,還可以根據(jù)中間值“”比較大小.8、D【解析】

如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點(diǎn)睛】本題考查了三視圖,元素和集合的關(guān)系,意在考查學(xué)生的空間想象能力和計(jì)算能力.9、B【解析】

根據(jù)全稱命題的否定為特稱命題,得到結(jié)果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項(xiàng):【點(diǎn)睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.10、C【解析】

根據(jù)給定的程序框圖,逐次計(jì)算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.11、D【解析】

根據(jù)樣本中心點(diǎn)在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計(jì)第年維修費(fèi)用超過(guò)15萬(wàn)元.故選:D.【點(diǎn)睛】本題考查回歸直線過(guò)樣本中心點(diǎn)、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.12、B【解析】

求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線,故選:B【點(diǎn)睛】利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由偶函數(shù)的性質(zhì)直接求解即可【詳解】.故答案為【點(diǎn)睛】本題考查函數(shù)的奇偶性,對(duì)數(shù)函數(shù)的運(yùn)算,考查運(yùn)算求解能力14、13【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時(shí)輸出的b值為13.故答案為13.15、【解析】

該陽(yáng)馬補(bǔ)形所得到的長(zhǎng)方體的對(duì)角線為外接球的直徑,由此能求出,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,從而內(nèi)切球半徑為,由此能求出.【詳解】四棱錐為陽(yáng)馬,側(cè)棱底面,且,,設(shè)該陽(yáng)馬的外接球半徑為,該陽(yáng)馬補(bǔ)形所得到的長(zhǎng)方體的對(duì)角線為外接球的直徑,,,側(cè)棱底面,且底面為正方形,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,內(nèi)切球半徑為,故.故答案為.【點(diǎn)睛】本題考查了幾何體外接球和內(nèi)切球的相關(guān)問(wèn)題,補(bǔ)形法的運(yùn)用,以及數(shù)學(xué)文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問(wèn)題,關(guān)鍵是能夠確定球心位置,以及選擇恰當(dāng)?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補(bǔ)形法(構(gòu)造法),通過(guò)補(bǔ)形為長(zhǎng)方體(正方體),球心位置即為體對(duì)角線的中點(diǎn);(2)外心垂線法,先找出幾何體中不共線三點(diǎn)構(gòu)成的三角形的外心,再找出過(guò)外心且與不共線三點(diǎn)確定的平面垂直的垂線,則球心一定在垂線上.16、【解析】

求導(dǎo)得到,討論和兩種情況,計(jì)算時(shí),函數(shù)在上單調(diào)遞減,故,不符合,排除,得到答案?!驹斀狻恳?yàn)?,所以,因?yàn)?,所?當(dāng),即時(shí),,則在上單調(diào)遞增,從而,故符合題意;當(dāng),即時(shí),因?yàn)樵谏蠁握{(diào)遞增,且,所以存在唯一的,使得.令,得,則在上單調(diào)遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點(diǎn)睛】本題考查了不等式恒成立問(wèn)題,轉(zhuǎn)化為函數(shù)的最值問(wèn)題是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)詳見(jiàn)解析;(2).【解析】

(1)由直徑所對(duì)的圓周角為,可知,通過(guò)計(jì)算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標(biāo)原點(diǎn),分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,求出相應(yīng)點(diǎn)的坐標(biāo),求出平面的一個(gè)法向量和平面的法向量,利用空間向量數(shù)量積運(yùn)算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因?yàn)榘雸A弧上的一點(diǎn),所以.在中,分別為的中點(diǎn),所以,且.于是在中,,所以為直角三角形,且.因?yàn)椋?所以.因?yàn)椋?,,所以平?又平面,所以平面平面.(2)由已知,以為坐標(biāo)原點(diǎn),分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的一個(gè)法向量為,則即,取,得.設(shè)平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.【點(diǎn)睛】本題考查了利用線面垂直判定面面垂直、利用空間向量數(shù)量積求二面角的余弦值問(wèn)題.18、(Ⅰ)(Ⅱ)7839.3元【解析】

(Ⅰ)由題意計(jì)算x、y的平均值,進(jìn)而由公式求出回歸系數(shù)b和a,即可寫出回歸直線方程;(Ⅱ)由題意計(jì)算平均數(shù)μ,得出z~N(μ,),求出日銷量z∈[0.13,0.15)、[0.15,0.16)和[0.16,+∞)的概率,計(jì)算獎(jiǎng)金總數(shù)是多少.【詳解】(Ⅰ)因?yàn)?,,因?yàn)?,所以,所以;(Ⅱ)因?yàn)椋?,故即,日銷量的概率為,日銷量的概率為,日銷量的概率為,所以獎(jiǎng)金總數(shù)大約為:(元).【點(diǎn)睛】本題考查利用最小二乘法求回歸直線方程,還考查了利用正態(tài)分布計(jì)算概率,進(jìn)而估計(jì)總體情況,屬于中檔題.19、(Ⅰ)見(jiàn)解析;(Ⅱ)【解析】

(Ⅰ)取的中點(diǎn),連接,由,,得三點(diǎn)共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設(shè),則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過(guò)作,則平面,即點(diǎn)到平面的距離,由是中點(diǎn),得到到平面的距離,然后根據(jù)與平面所成的角的正弦值為求解.【詳解】(Ⅰ)取的中點(diǎn),連接,由,,得三點(diǎn)共線,且,又,,所以平面,所以.(Ⅱ)設(shè),,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過(guò)作,則平面,即點(diǎn)到平面的距離,因?yàn)槭侵悬c(diǎn),所以為到平面的距離,因?yàn)榕c平面所成的角的正弦值為,即,解得.【點(diǎn)睛】本題主要考查線面垂直的判定定理,線面角的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象運(yùn)算求解的能力,屬于中檔題.20、見(jiàn)解析【解析】

根據(jù)等差數(shù)列性質(zhì)及、,可求得等差數(shù)列的通項(xiàng)公式,由即可求得的值;根據(jù)等式,變形可得,分別討論?、佗冖壑械囊粋€(gè),結(jié)合等比數(shù)列通項(xiàng)公式代入化簡(jiǎn),檢驗(yàn)是否存在正整數(shù)的值即可.【詳解】∵在等差數(shù)列中,,∴,∴公差,∴,∴,若存在正整數(shù),使得成立,即成立,設(shè)正數(shù)等比數(shù)列的公比為的公比為,若選①,∵,∴,∴,∴,∴當(dāng)時(shí),滿足成立.若選②,∵,∴,∴,∴,∴方程無(wú)正整數(shù)解,∴不存在正整數(shù)使得成立.若選③,∵,∴,∴,∴,∴解得或(舍去),∴,∴當(dāng)時(shí),滿足成立.【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式的求法,等比數(shù)列通項(xiàng)公式及前n項(xiàng)和公式的應(yīng)用,遞推公式的簡(jiǎn)單應(yīng)用,補(bǔ)充條件后求參數(shù)的值,屬于中檔題.21、(1)(為參數(shù)),;(2)【解析】分析:(1)直線的參數(shù)方程為(為參數(shù)),其中表示之間的距離,而極坐標(biāo)方程可化為,從而的直角方程為.(2)設(shè),則,利用在圓上得到滿足的方程,最后利用韋達(dá)定理就可求出兩條線段

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論