版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆廣東省廣州荔灣區(qū)真光中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等式成立,則()A.0 B.5 C.7 D.132.是定義在上的增函數(shù),且滿足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.3.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.4.若集合,,則()A. B. C. D.5.設(shè),則A. B. C. D.6.已知三棱錐P﹣ABC的頂點都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.7.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關(guān)關(guān)系,統(tǒng)計該店2017年每周六的銷售量及當(dāng)天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關(guān)關(guān)系為()A.正相關(guān),相關(guān)系數(shù)的值為B.負(fù)相關(guān),相關(guān)系數(shù)的值為C.負(fù)相關(guān),相關(guān)系數(shù)的值為D.正相關(guān),相關(guān)負(fù)數(shù)的值為8.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.9.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則10.設(shè)橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關(guān)于原點對稱的兩點,直線BF交直線AC于M,且M為AC的中點,則橢圓E的離心率是()A. B. C. D.11.設(shè)是虛數(shù)單位,則()A. B. C. D.12.設(shè)命題:,,則為A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)如圖所示的偽代碼,輸出的值為______.14.的展開式中的常數(shù)項為__________.15.在△ABC中,a=3,,B=2A,則cosA=_____.16.若函數(shù),則的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)當(dāng)時,求不等式的解集;(Ⅱ)若不等式對任意實數(shù)恒成立,求實數(shù)的取值范圍.18.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大?。唬?)求函數(shù)的值域.19.(12分)已知函數(shù)(1)若恒成立,求實數(shù)的取值范圍;(2)若方程有兩個不同實根,,證明:.20.(12分)已知函數(shù)(,)滿足下列3個條件中的2個條件:①函數(shù)的周期為;②是函數(shù)的對稱軸;③且在區(qū)間上單調(diào).(Ⅰ)請指出這二個條件,并求出函數(shù)的解析式;(Ⅱ)若,求函數(shù)的值域.21.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,證明:.22.(10分)如圖,在長方體中,,為的中點,為的中點,為線段上一點,且滿足,為的中點.(1)求證:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進(jìn)行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應(yīng)用,考查了特殊值代入法,考查了數(shù)學(xué)運算能力.2、D【解析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.3、D【解析】
設(shè)等比數(shù)列的公比為q,,運用等比數(shù)列的性質(zhì)和通項公式,以及等差數(shù)列的中項性質(zhì),解方程可得公比q.【詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設(shè)公比為q,則,則負(fù)的舍去,故選D.【點睛】本題主要考查了等差數(shù)列的中項性質(zhì)和等比數(shù)列的通項公式的應(yīng)用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運算能力,屬于基礎(chǔ)題.4、A【解析】
用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.5、C【解析】分析:利用復(fù)數(shù)的除法運算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡復(fù)數(shù),然后求解復(fù)數(shù)的模.詳解:,則,故選c.點睛:復(fù)數(shù)是高考中的必考知識,主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運算.要注意對實部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運算主要考查除法運算,通過分母實數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.6、D【解析】
由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計算能力,屬于中檔題.7、C【解析】
根據(jù)正負(fù)相關(guān)的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負(fù)相關(guān).相關(guān)系數(shù)為負(fù).故選:C.【點睛】本題考查變量的相關(guān)關(guān)系,考查正相關(guān)和負(fù)相關(guān)的區(qū)別.掌握正負(fù)相關(guān)的定義是解題基礎(chǔ).8、C【解析】
利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時,,,故當(dāng)時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達(dá)形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎(chǔ).9、D【解析】
根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D【點睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.10、C【解析】
連接,為的中位線,從而,且,進(jìn)而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關(guān)于原點對稱的兩點,不妨設(shè)B在第二象限,直線BF交直線AC于M,且M為AC的中點為的中位線,,且,,解得橢圓的離心率.故選:C【點睛】本題考查了橢圓的幾何性質(zhì),考查了運算求解能力,屬于基礎(chǔ)題.11、A【解析】
利用復(fù)數(shù)的乘法運算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點睛】本題考查復(fù)數(shù)的乘法運算,考查計算能力,屬于基礎(chǔ)題.12、D【解析】
直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】
表示初值S=1,i=1,分三次循環(huán)計算得S=10>0,輸出i=7.【詳解】S=1,i=1第一次循環(huán):S=1+1=2,i=1+2=3;第二次循環(huán):S=2+3=5,i=3+2=5;第三次循環(huán):S=5+5=10,i=5+2=7;S=10>9,循環(huán)結(jié)束,輸出:i=7.故答案為:7【點睛】本題考查在程序語句的背景下已知輸入的循環(huán)結(jié)構(gòu)求輸出值問題,屬于基礎(chǔ)題.14、31【解析】
由二項式定理及其展開式得通項公式得:因為的展開式得通項為,則的展開式中的常數(shù)項為:,得解.【詳解】解:,則的展開式中的常數(shù)項為:.故答案為:31.【點睛】本題考查二項式定理及其展開式的通項公式,求某項的導(dǎo)數(shù),考查計算能力.15、【解析】
由已知利用正弦定理,二倍角的正弦函數(shù)公式即可計算求值得解.【詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【點睛】本題主要考查了正弦定理,二倍角的正弦函數(shù)公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題.16、【解析】
根據(jù)題意,由函數(shù)的解析式求出的值,進(jìn)而計算可得答案.【詳解】根據(jù)題意,函數(shù),則,則;故答案為:.【點睛】本題考查分段函數(shù)的性質(zhì)、對數(shù)運算法則的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)分三種情況討論,分別求解不等式組,然后求并集即可得不等式的解集;(Ⅱ)根據(jù)絕對值不等式的性質(zhì)可得,不等式對任意實數(shù)恒成立,等價于,解不等式即可求的取值范圍.試題解析:(Ⅰ)當(dāng)時,即,①當(dāng)時,得,所以;②當(dāng)時,得,即,所以;③當(dāng)時,得成立,所以.故不等式的解集為.(Ⅱ)因為,由題意得,則,解得,故的取值范圍是.18、(1);(2)【解析】
(1)由向量平行的坐標(biāo)表示、正弦定理邊化角和兩角和差正弦公式可化簡求得,進(jìn)而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡函數(shù)為,根據(jù)的范圍可確定的范圍,結(jié)合正弦函數(shù)圖象可確定所求函數(shù)的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數(shù)的值域為.【點睛】本題考查三角恒等變換、解三角形和三角函數(shù)性質(zhì)的綜合應(yīng)用問題;涉及到共線向量的坐標(biāo)表示、利用三角恒等變換公式化簡求值、正弦定理邊化角的應(yīng)用、正弦型函數(shù)值域的求解等知識.19、(1)(2)詳見解析【解析】
(1)將原不等式轉(zhuǎn)化為,構(gòu)造函數(shù),求得的最大值即可;
(2)首先通過求導(dǎo)判斷的單調(diào)區(qū)間,考查兩根的取值范圍,再構(gòu)造函數(shù),將問題轉(zhuǎn)化為證明,探究在區(qū)間內(nèi)的最大值即可得證.【詳解】解:(1)由,即,即,令,則只需,,令,得,在上單調(diào)遞增,在上單調(diào)遞減,,的取值范圍是;(2)證明:不妨設(shè),當(dāng)時,單調(diào)遞增,當(dāng)時,單調(diào)遞減,,當(dāng)時,,,要證,即證,由在上單調(diào)遞增,只需證明,由,只需證明,令,,只需證明,易知,由,故,,從而在上單調(diào)遞增,由,故當(dāng)時,,故,證畢.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,最值等,關(guān)鍵是要對問題進(jìn)行轉(zhuǎn)化,比如把恒成立問題轉(zhuǎn)化為最值問題,把根的個數(shù)問題轉(zhuǎn)化為圖像的交點個數(shù),進(jìn)而轉(zhuǎn)化為證明不等式的問題,屬難題.20、(Ⅰ)只有①②成立,;(Ⅱ).【解析】
(Ⅰ)依次討論①②成立,①③成立,②③成立,計算得到只有①②成立,得到答案.(Ⅱ)得到,得到函數(shù)值域.【詳解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,則,,,若①③成立,則,,不合題意,若②③成立,則,,與③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由題意得,,所以函數(shù)的值域為.【點睛】本題考查了三角函數(shù)的周期,對稱軸,單調(diào)性,值域,表達(dá)式,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.21、(1)(2)證明見解析【解析】
(1),①當(dāng)時,,②兩式相減即得數(shù)列的通項公式;(2)先求出,再利用裂項相消法求和證明.【詳解】(1)解:,①當(dāng)時,.當(dāng)時,,②由①-②,得,因為符合上式,所以.(2)證明:因為,所以.【點睛】本題主要考查數(shù)列通項的求法,考查數(shù)列求和,意在考查學(xué)生對這些知識的理解掌握水平.22、(1)證明見解析(2)【解析】
(1)解法一:作的中點,連接,.利用三角形的中位線證得,利用梯形中位線證得,由此證得平面平面,進(jìn)而證得平面.解法二:建立空間直角坐標(biāo)系,通過證明直線的方向向量和平面的法向量垂直,證得平面.(2)利用平面和平面法向量,計算出二面角的余弦值.【詳解】(1)法一:作的中點,連接,.又為的中點,∴為的中位線,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 照明器具生產(chǎn)設(shè)備的故障分析與風(fēng)險管理考核試卷
- 幼兒園長短高矮課程設(shè)計
- 2025版家禽養(yǎng)殖場租賃與物流配送合同范本3篇
- 2025版凱悅酒店消防系統(tǒng)改造升級及驗收合同9篇
- 直播唱歌教學(xué)課程設(shè)計
- 2025版國際貿(mào)易合同違約責(zé)任及賠償計算范本3篇
- 二零二五年度c型鋼工程項目采購合同2篇
- 2025年度智能電網(wǎng)安全電子交易SET系統(tǒng)建設(shè)合同
- 《基于分子編輯的異喹啉酮及異吲哚啉酮的合成研究》
- 《信息化發(fā)展對區(qū)域新舊動能轉(zhuǎn)換的影響研究》
- 激光技術(shù)員年終總結(jié)
- 危險化學(xué)品經(jīng)營許可證核發(fā)程序省公開課一等獎全國示范課微課金獎?wù)n件
- 1北京師范大學(xué)馬克思主義哲學(xué)期末測試卷
- 智能建造理論與實踐 課件全套 第1-6章 智能建造概述- 智慧城市
- 修井作業(yè)安全培訓(xùn)課件
- 內(nèi)控合規(guī)風(fēng)險管理手冊
- 教師工作職責(zé)培訓(xùn)課件建立良好的教師與學(xué)生關(guān)系
- 品管部年度工作總結(jié)
- 胃腸外科病人圍手術(shù)期營養(yǎng)管理專家共識護(hù)理課件
- 2024屆高考語文復(fù)習(xí):小說敘述特色專題復(fù)習(xí) 課件
- 四川省普通高中2024屆高三上學(xué)期學(xué)業(yè)水平考試數(shù)學(xué)試題(解析版)
評論
0/150
提交評論