2025屆山東濰坊實驗中學高考數(shù)學三模試卷含解析_第1頁
2025屆山東濰坊實驗中學高考數(shù)學三模試卷含解析_第2頁
2025屆山東濰坊實驗中學高考數(shù)學三模試卷含解析_第3頁
2025屆山東濰坊實驗中學高考數(shù)學三模試卷含解析_第4頁
2025屆山東濰坊實驗中學高考數(shù)學三模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆山東濰坊實驗中學高考數(shù)學三模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.是定義在上的增函數(shù),且滿足:的導函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.2.設(shè)點,,不共線,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件3.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.4.如果直線與圓相交,則點與圓C的位置關(guān)系是()A.點M在圓C上 B.點M在圓C外C.點M在圓C內(nèi) D.上述三種情況都有可能5.()A. B. C. D.6.下列說法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立7.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.408.若直線的傾斜角為,則的值為()A. B. C. D.9.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于10.已知全集為,集合,則()A. B. C. D.11.以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(shù)(上一年同月)變化圖表,則以下說法錯誤的是()(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A.3月份四個城市之間的居民消費價格指數(shù)與其它月份相比增長幅度較為平均B.4月份僅有三個城市居民消費價格指數(shù)超過102C.四個月的數(shù)據(jù)顯示北京市的居民消費價格指數(shù)增長幅度波動較小D.僅有天津市從年初開始居民消費價格指數(shù)的增長呈上升趨勢12.如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,.若,則實數(shù)a的值是______.14.已知復數(shù)滿足(為虛數(shù)單位),則復數(shù)的實部為____________.15.函數(shù)的定義域是__________.16.已知函數(shù),若方程的解為,(),則_______;_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.18.(12分)已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).(1)求實數(shù)的值;(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)為增函數(shù),求實數(shù)的取值范圍.19.(12分)在平面直角坐標系中,橢圓:的右焦點為(,為常數(shù)),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點.⑴求橢圓的標準方程;⑵若時,,求實數(shù);⑶試問的值是否與的大小無關(guān),并證明你的結(jié)論.20.(12分)已知(1)當時,判斷函數(shù)的極值點的個數(shù);(2)記,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,求證:.21.(12分)在四棱錐的底面是菱形,底面,,分別是的中點,.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點的位置;若不存在,說明理由.22.(10分)中的內(nèi)角,,的對邊分別是,,,若,.(1)求;(2)若,點為邊上一點,且,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點睛】本題考查導數(shù)在函數(shù)單調(diào)性中的應用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設(shè)中給出的原函數(shù)與導數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.2、C【解析】

利用向量垂直的表示、向量數(shù)量積的運算,結(jié)合充分必要條件的定義判斷即可.【詳解】由于點,,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運算,屬于基礎(chǔ)題.3、B【解析】

先設(shè)直線與圓相切于點,根據(jù)題意,得到,再由,根據(jù)勾股定理求出,從而可得漸近線方程.【詳解】設(shè)直線與圓相切于點,因為是以圓的直徑為斜邊的圓內(nèi)接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質(zhì)即可,屬于??碱}型.4、B【解析】

根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點到圓的圓心的距離大于半徑.即點與圓的位置關(guān)系是點在圓外.故選:【點睛】本題主要考查直線與圓相交的性質(zhì),考查點到直線距離公式的應用,屬于中檔題.5、D【解析】

利用,根據(jù)誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.6、C【解析】

A:否命題既否條件又否結(jié)論,故A錯.B:由正弦定理和邊角關(guān)系可判斷B錯.C:可判斷其逆否命題的真假,C正確.D:根據(jù)冪函數(shù)的性質(zhì)判斷D錯.【詳解】解:A:“若,則”的否命題是“若,則”,故A錯.B:在中,,故“”是“”成立的必要充分條件,故B錯.C:“若,則”“若,則”,故C正確.D:由冪函數(shù)在遞減,故D錯.故選:C【點睛】考查判斷命題的真假,是基礎(chǔ)題.7、C【解析】

設(shè)出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【詳解】設(shè)等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數(shù)列的通項公式的求法和應用,涉及等差數(shù)列的前項和公式的應用,屬于容易題.8、B【解析】

根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.9、D【解析】

試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論.10、D【解析】

對于集合,求得函數(shù)的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點睛】本題考查集合的補集、交集運算,考查具體函數(shù)的定義域,考查解一元二次不等式.11、D【解析】

采用逐一驗證法,根據(jù)圖表,可得結(jié)果.【詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數(shù)低于102C正確,從圖表一中可知,只有北京市4個月的居民消費價格指數(shù)相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數(shù)的增長呈上升趨勢故選:D【點睛】本題考查圖表的認識,審清題意,細心觀察,屬基礎(chǔ)題.12、C【解析】

利用建系,假設(shè)長度,表示向量與,利用向量的夾角公式,可得結(jié)果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標系如圖設(shè),所以則所以所以故選:C【點睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】

根據(jù)集合交集的定義即得.【詳解】集合,,,,則a的值是9.故答案為:9【點睛】本題考查集合的交集,是基礎(chǔ)題.14、【解析】

利用復數(shù)的概念與復數(shù)的除法運算計算即可得到答案.【詳解】,所以復數(shù)的實部為2.故答案為:2【點睛】本題考查復數(shù)的除法運算,考查學生的基本計算能力,是一道基礎(chǔ)題.15、【解析】由,得,所以,所以原函數(shù)定義域為,故答案為.16、【解析】

求出在上的對稱軸,依據(jù)對稱性可得的值;由可得,依據(jù)可求出的值.【詳解】解:令,解得因為,所以關(guān)于對稱.則.由,則由可知,,又因為,所以,則,即故答案為:;.【點睛】本題考查了三角函數(shù)的對稱軸,考查了誘導公式,考查了同角三角函數(shù)的基本關(guān)系.本題的易錯點在于沒有正確判斷的取值范圍,導致求出.在求的對稱軸時,常用整體代入法,即令進行求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)取中點為,連接,,,,根據(jù)線段關(guān)系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點,,,為,,軸建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點為,連接,,,如下圖所示:因為,,,所以,故為等邊三角形,則.連接,因為,,所以為等邊三角形,則.又,所以平面.因為平面,所以.(2)由(1)知,因為平面平面,平面,所以平面,以為原點,,,為,,軸建立如圖所示的空間直角坐標系,易求,則,,,,則,,.設(shè)平面的法向量,則即令,則,,故.設(shè)平面的法向量,則則令,則,,故,所以.由圖可知,二面角為鈍二面角角,所以二面角的余弦值為.【點睛】本題考查線面垂直的判定,由線面垂直判定線線垂直,由空間向量法求平面與平面形成二面角的大小,屬于中檔題.18、(1);(2).【解析】

試題分析:(1)先求導,然后利用導數(shù)等于求出切點的橫坐標,代入兩個曲線的方程,解方程組,可求得;(2)設(shè)與交點的橫坐標為,利用導數(shù)求得,從而,然后利用求得的取值范圍為.試題解析:(1)對求導得.設(shè)直線與曲線切于點,則,解得,所以的值為1.(2)記函數(shù),下面考察函數(shù)的符號,對函數(shù)求導得.當時,恒成立.當時,,從而.∴在上恒成立,故在上單調(diào)遞減.,∴,又曲線在上連續(xù)不間斷,所以由函數(shù)的零點存在性定理及其單調(diào)性知唯一的,使.∴;,,∴,從而,∴,由函數(shù)為增函數(shù),且曲線在上連續(xù)不斷知在,上恒成立.①當時,在上恒成立,即在上恒成立,記,則,當變化時,變化情況列表如下:

3

0

極小值

∴,故“在上恒成立”只需,即.②當時,,當時,在上恒成立,綜合①②知,當時,函數(shù)為增函數(shù).故實數(shù)的取值范圍是考點:函數(shù)導數(shù)與不等式.【方法點晴】函數(shù)導數(shù)問題中,和切線有關(guān)的題目非常多,我們只要把握住關(guān)鍵點:一個是切點,一個是斜率,切點即在原來函數(shù)圖象上,也在切線上;斜率就是導數(shù)的值.根據(jù)這兩點,列方程組,就能解決.本題第二問我們采用分層推進的策略,先求得的表達式,然后再求得的表達式,我們就可以利用導數(shù)這個工具來求的取值范圍了.19、(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數(shù)法可得,橢圓方程為;(2)我們要知道=的條件應用,在于直線交橢圓兩交點M,N的橫坐標為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時,由(2)得;另一方面,當斜率存在即時,可設(shè)直線的斜率為,得直線MN:,聯(lián)立直線與橢圓方程,利用韋達定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關(guān)試題解析:(1),得:,橢圓方程為(2)當時,,得:,于是當=時,,于是,得到(3)①當=時,由(2)知②當時,設(shè)直線的斜率為,,則直線MN:聯(lián)立橢圓方程有,,,=+==得綜上,為定值,與直線的傾斜角的大小無關(guān)考點:(1)待定系數(shù)求橢圓方程;(2)橢圓簡單的幾何性質(zhì);(3)直線與圓錐曲線20、(1)沒有極值點;(2)證明見解析【解析】

(1)求導可得,再求導可得,則在遞增,則,從而在遞增,即可判斷;(2)轉(zhuǎn)化問題為存在且,使,可得,由(1)可知,即,則,整理可得,則,設(shè),則可整理為,設(shè),利用導函數(shù)可得,即可求證.【詳解】(1)當時,,,所以在遞增,所以,所以在遞增,所以函數(shù)沒有極值點.(2)由題,,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面證明,只需證明:,令,則證,即.設(shè),那么,所以,所以,即【點睛】本題考查利用導函數(shù)求函數(shù)的極值點,考查利用導函數(shù)解決雙變量問題,考查運算能力與推理論證能力.21、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】

(Ⅰ)由題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論