版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
新疆烏魯木齊市名校2025屆高三考前熱身數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.2.?dāng)?shù)列滿足:,,,為其前n項(xiàng)和,則()A.0 B.1 C.3 D.43.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣24.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.5.已知是定義在上的奇函數(shù),且當(dāng)時(shí),.若,則的解集是()A. B.C. D.6.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實(shí)數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)7.中,點(diǎn)在邊上,平分,若,,,,則()A. B. C. D.8.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立9.設(shè)集合,,若,則()A. B. C. D.10.設(shè)復(fù)數(shù),則=()A.1 B. C. D.11.小張家訂了一份報(bào)紙,送報(bào)人可能在早上之間把報(bào)送到小張家,小張離開家去工作的時(shí)間在早上之間.用表示事件:“小張?jiān)陔x開家前能得到報(bào)紙”,設(shè)送報(bào)人到達(dá)的時(shí)間為,小張離開家的時(shí)間為,看成平面中的點(diǎn),則用幾何概型的公式得到事件的概率等于()A. B. C. D.12.一個(gè)封閉的棱長(zhǎng)為2的正方體容器,當(dāng)水平放置時(shí),如圖,水面的高度正好為棱長(zhǎng)的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.點(diǎn)在雙曲線的右支上,其左、右焦點(diǎn)分別為、,直線與以坐標(biāo)原點(diǎn)為圓心、為半徑的圓相切于點(diǎn),線段的垂直平分線恰好過點(diǎn),則該雙曲線的漸近線的斜率為__________.14.一個(gè)房間的地面是由12個(gè)正方形所組成,如圖所示.今想用長(zhǎng)方形瓷磚鋪滿地面,已知每一塊長(zhǎng)方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.15.如圖,直三棱柱中,,,,P是的中點(diǎn),則三棱錐的體積為________.16.已知集合,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,橢圓的長(zhǎng)軸長(zhǎng)為,點(diǎn)、、為橢圓上的三個(gè)點(diǎn),為橢圓的右端點(diǎn),過中心,且,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)、是橢圓上位于直線同側(cè)的兩個(gè)動(dòng)點(diǎn)(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.18.(12分)已知橢圓的焦點(diǎn)在軸上,且順次連接四個(gè)頂點(diǎn)恰好構(gòu)成了一個(gè)邊長(zhǎng)為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過橢圓右焦點(diǎn)的直線交于、兩點(diǎn),若對(duì)滿足條件的任意直線,不等式恒成立,求的最小值.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)把曲線向下平移個(gè)單位,然后各點(diǎn)橫坐標(biāo)變?yōu)樵瓉?lái)的倍得到曲線(縱坐標(biāo)不變),設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.20.(12分)已知橢圓的短軸長(zhǎng)為,離心率,其右焦點(diǎn)為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.21.(12分)如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點(diǎn).(1)證明:;(2)求二面角的余弦值.22.(10分)某芯片公司為制定下一年的研發(fā)投入計(jì)劃,需了解年研發(fā)資金投入量x(單位:億元)對(duì)年銷售額y(單位:億元)的影響.該公司對(duì)歷史數(shù)據(jù)進(jìn)行對(duì)比分析,建立了兩個(gè)函數(shù)模型:①y=α+βx2,②y=eλx+t,其中現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷售額yi的數(shù)據(jù),i=1,2,?,12,并對(duì)這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設(shè)ui和yi的相關(guān)系數(shù)為r1,xi和(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷售額y需達(dá)到90億元,預(yù)測(cè)下一年的研發(fā)資金投入量x是多少億元?附:①相關(guān)系數(shù)r=i=1n(xi-x②參考數(shù)據(jù):308=4×77,90≈9.4868,e
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù),兩邊平方,化簡(jiǎn)得,再利用數(shù)量積定義得到求解.【詳解】因?yàn)槠矫嫦蛄?,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點(diǎn)睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.2、D【解析】
用去換中的n,得,相加即可找到數(shù)列的周期,再利用計(jì)算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項(xiàng)分別為1,2,1,-1,-2,-1,所以,.故選:D.【點(diǎn)睛】本題考查周期數(shù)列的應(yīng)用,在求時(shí),先算出一個(gè)周期的和即,再將表示成即可,本題是一道中檔題.3、D【解析】
化簡(jiǎn)z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.4、D【解析】
根據(jù)框圖,模擬程序運(yùn)行,即可求出答案.【詳解】運(yùn)行程序,,
,,,,,結(jié)束循環(huán),故輸出,故選:D.【點(diǎn)睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.5、B【解析】
利用函數(shù)奇偶性可求得在時(shí)的解析式和,進(jìn)而構(gòu)造出不等式求得結(jié)果.【詳解】為定義在上的奇函數(shù),.當(dāng)時(shí),,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.【點(diǎn)睛】本題考查函數(shù)奇偶性的應(yīng)用,涉及到利用函數(shù)奇偶性求解對(duì)稱區(qū)間的解析式;易錯(cuò)點(diǎn)是忽略奇函數(shù)在處有意義時(shí),的情況.6、C【解析】
求函數(shù)導(dǎo)數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡(jiǎn)圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結(jié)合圖象可知,解得a∈[-3,0),故選C.【點(diǎn)睛】本題主要考查了利用函數(shù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而研究函數(shù)的最值,屬于??碱}型.7、B【解析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運(yùn)算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算,屬于基礎(chǔ)題.8、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點(diǎn):全稱命題.9、A【解析】
根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點(diǎn)睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.10、A【解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算,代入化簡(jiǎn)即可求解.【詳解】復(fù)數(shù),則故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算與化簡(jiǎn)求值,屬于基礎(chǔ)題.11、D【解析】
這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應(yīng)位于五邊形內(nèi),作圖如下:故選:D【點(diǎn)睛】考查幾何概型,是基礎(chǔ)題.12、B【解析】
根據(jù)已知可知水面的最大高度為正方體面對(duì)角線長(zhǎng)的一半,由此得到結(jié)論.【詳解】正方體的面對(duì)角線長(zhǎng)為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對(duì)角線長(zhǎng)的一半,即最大水面高度為,故選B.【點(diǎn)睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】如圖,是切點(diǎn),是的中點(diǎn),因?yàn)?,所以,又,所以,,又,根?jù)雙曲線的定義,有,即,兩邊平方并化簡(jiǎn)得,所以,因此.14、11【解析】
將圖形中左側(cè)的兩列瓷磚的形狀先確定,再由此進(jìn)行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進(jìn)行分類,在其中會(huì)有相同元素的排列問題,需用到“縮倍法”.采用分類計(jì)數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個(gè):,3個(gè),2個(gè):,1個(gè),4個(gè):,(2)左側(cè)兩列如圖貼磚,然后貼剩下的部分:3個(gè):,1個(gè),2個(gè):,綜上,一共有(種).故答案為:11.【點(diǎn)睛】本題考查了分類計(jì)數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.15、【解析】
證明平面,于是,利用三棱錐的體積公式即可求解.【詳解】平面,平面,,又.平面,是的中點(diǎn),.
故答案為:【點(diǎn)睛】本題考查了線面垂直的判定定理、三棱錐的體積公式,屬于基礎(chǔ)題.16、【解析】
根據(jù)并集的定義計(jì)算即可.【詳解】由集合的并集,知.故答案為:【點(diǎn)睛】本題考查集合的并集運(yùn)算,屬于容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)詳見解析.【解析】試題分析:(1)利用題中條件先得出的值,然后利用條件,結(jié)合橢圓的對(duì)稱性得到點(diǎn)的坐標(biāo),然后將點(diǎn)的坐標(biāo)代入橢圓方程求出的值,從而確定橢圓的方程;(2)將條件得到直線與的斜率直線的關(guān)系(互為相反數(shù)),然后設(shè)直線的方程為,將此直線的方程與橢圓方程聯(lián)立,求出點(diǎn)的坐標(biāo),注意到直線與的斜率之間的關(guān)系得到點(diǎn)的坐標(biāo),最后再用斜率公式證明直線的斜率為定值.(1),,又是等腰三角形,所以,把點(diǎn)代入橢圓方程,求得,所以橢圓方程為;(2)由題易得直線、斜率均存在,又,所以,設(shè)直線代入橢圓方程,化簡(jiǎn)得,其一解為,另一解為,可求,用代入得,,為定值.考點(diǎn):1.橢圓的方程;2.直線與橢圓的位置關(guān)系;3.兩點(diǎn)間連線的斜率18、(1)(2)【解析】
(1)由已知條件列出關(guān)于和的方程,并計(jì)算出和的值,jike得到橢圓的方程.(2)設(shè)出點(diǎn)和點(diǎn)坐標(biāo),運(yùn)用點(diǎn)坐標(biāo)計(jì)算出,分類討論直線的斜率存在和不存在兩種情況,求解出的最小值.【詳解】(1)由己知得:,解得,所以,橢圓的方程(2)設(shè),.當(dāng)直線垂直于軸時(shí),,且此時(shí),,當(dāng)直線不垂直于軸時(shí),設(shè)直線由,得.,.要使恒成立,只需,即最小值為【點(diǎn)睛】本題考查了求解橢圓方程以及直線與橢圓的位置關(guān)系,求解過程中需要分類討論直線的斜率存在和不存在兩種情況,并運(yùn)用根與系數(shù)的關(guān)系轉(zhuǎn)化為只含一個(gè)變量的表達(dá)式進(jìn)行求解,需要掌握解題方法,并且有一定的計(jì)算量.19、(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程兩邊同時(shí)乘以得,進(jìn)而可化簡(jiǎn)得出曲線的直角坐標(biāo)方程;(2)根據(jù)變換得出的普通方程為,可設(shè)點(diǎn)的坐標(biāo)為,利用點(diǎn)到直線的距離公式結(jié)合正弦函數(shù)的有界性可得出結(jié)果.【詳解】(1)由(為參數(shù)),得,化簡(jiǎn)得,故直線的普通方程為.由,得,又,,.所以的直角坐標(biāo)方程為;(2)由(1)得曲線的直角坐標(biāo)方程為,向下平移個(gè)單位得到,縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的倍得到曲線的方程為,所以曲線的參數(shù)方程為(為參數(shù)).故點(diǎn)到直線的距離為,當(dāng)時(shí),最小為.【點(diǎn)睛】本題考查曲線的參數(shù)方程、極坐標(biāo)方程與普通方程的相互轉(zhuǎn)化,同時(shí)也考查了利用橢圓的參數(shù)方程解決點(diǎn)到直線的距離最值的求解,考查計(jì)算能力,屬于中等題.20、(1);(2).【解析】
(1)由已知短軸長(zhǎng)求出,離心率求出關(guān)系,結(jié)合,即可求解;(2)當(dāng)直線的斜率都存在時(shí),不妨設(shè)直線的方程為,直線與橢圓方程聯(lián)立,利用相交弦長(zhǎng)公式求出,斜率為,求出,得到關(guān)于的表達(dá)式,根據(jù)表達(dá)式的特點(diǎn)用“”判別式法求出范圍,當(dāng)有一斜率不存在時(shí),另一條斜率為,根據(jù)弦長(zhǎng)公式,求出,即可求出結(jié)論.【詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當(dāng)直線的斜率都存在時(shí),由對(duì)稱性不妨設(shè)直線的方程為,由,,設(shè),則,則,由橢圓對(duì)稱性可設(shè)直線的斜率為,則,.令,則,當(dāng)時(shí),,當(dāng)時(shí),由得,所以,即,且.②當(dāng)直線的斜率其中一條不存在時(shí),根據(jù)對(duì)稱性不妨設(shè)設(shè)直線的方程為,斜率不存在,則,,此時(shí).若設(shè)的方程為,斜率不存在,則,綜上可知的取值范圍是.【點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系,注意根與系數(shù)關(guān)系、弦長(zhǎng)公式、函數(shù)最值、橢圓性質(zhì)的合理應(yīng)用,意在考查邏輯推理、計(jì)算求解能力,屬于難題.21、(1)詳見解析;(2).【解析】
(1)根據(jù)平面,四邊形是矩形,由為中點(diǎn),且,利用平面幾何知識(shí),可得,又平面,所以,根據(jù)線面垂直的判定定理可有平面,從而得證.(2)分別以,,為,,軸建立空間直角坐標(biāo)系,得到,,,,分別求得平和平面的法向量,代入二面角向量公式求解.【詳解】(1)證明:∵平面,∴四邊形是矩形,∵為中點(diǎn),且,∴,∵,,,∴.∴,∵,∴與相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2)如圖,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,設(shè)平
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州電力職業(yè)技術(shù)學(xué)院《Python編程原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽(yáng)幼兒師范高等專科學(xué)?!吨评湓砼c低溫工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025青海省建筑安全員B證(項(xiàng)目經(jīng)理)考試題庫(kù)
- 2025重慶建筑安全員B證考試題庫(kù)及答案
- 貴陽(yáng)康養(yǎng)職業(yè)大學(xué)《建筑工程識(shí)圖綜合實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州中醫(yī)藥大學(xué)《插畫創(chuàng)作》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年云南建筑安全員-B證考試題庫(kù)附答案
- 廣州醫(yī)科大學(xué)《高頻電子電路》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025海南省安全員-B證考試題庫(kù)附答案
- 2025云南省安全員-B證考試題庫(kù)及答案
- 術(shù)后甲狀旁腺功能減退癥管理專家共識(shí)
- 【7道期末】安徽省安慶市區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末道德與法治試題(含解析)
- 基金項(xiàng)目經(jīng)理招聘筆試題與參考答案(某大型集團(tuán)公司)2025年
- 學(xué)校2024-2025學(xué)年教研工作計(jì)劃
- 北京市矢量地圖-可改顏色
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 歷史 含解析
- 煙草執(zhí)法課件教學(xué)課件
- 數(shù)字化交付施工方案
- 漢字文化解密學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 綿陽(yáng)小升初數(shù)學(xué)試題(綿中英才學(xué)校)
- 安徽省合肥市2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試題(含答案)3
評(píng)論
0/150
提交評(píng)論