版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
甘肅省鎮(zhèn)原縣鎮(zhèn)原中學2025屆高考全國統(tǒng)考預測密卷數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關(guān)關(guān)系,統(tǒng)計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關(guān)關(guān)系為()A.正相關(guān),相關(guān)系數(shù)的值為B.負相關(guān),相關(guān)系數(shù)的值為C.負相關(guān),相關(guān)系數(shù)的值為D.正相關(guān),相關(guān)負數(shù)的值為2.已知函數(shù),且關(guān)于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍().A. B. C. D.3.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.4.已知雙曲線:,,為其左、右焦點,直線過右焦點,與雙曲線的右支交于,兩點,且點在軸上方,若,則直線的斜率為()A. B. C. D.5.已知拋物線y2=4x的焦點為F,拋物線上任意一點P,且PQ⊥y軸交y軸于點Q,則的最小值為()A. B. C.l D.16.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.7.《九章算術(shù)》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設(shè),假設(shè)金箠由粗到細各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤8.一個封閉的棱長為2的正方體容器,當水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.9.《九章算術(shù)》是我國古代數(shù)學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機取一點,則此點取自內(nèi)切圓的概率是()A. B. C. D.10.若集合,,則A. B. C. D.11.函數(shù)的圖像大致為().A. B.C. D.12.設(shè)正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.若,則____.14.若,且,則的最小值是______.15.已知函數(shù)為上的奇函數(shù),滿足.則不等式的解集為________.16.若、滿足約束條件,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點.(1)求證:平面;(2)求二面角的正弦值.18.(12分)為了解本學期學生參加公益勞動的情況,某校從初高中學生中抽取100名學生,收集了他們參加公益勞動時間(單位:小時)的數(shù)據(jù),繪制圖表的一部分如表.(1)從男生中隨機抽取一人,抽到的男生參加公益勞動時間在的概率:(2)從參加公益勞動時間的學生中抽取3人進行面談,記為抽到高中的人數(shù),求的分布列;(3)當時,高中生和初中生相比,那學段學生平均參加公益勞動時間較長.(直接寫出結(jié)果)19.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.20.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.21.(12分)記數(shù)列的前項和為,已知成等差數(shù)列.(1)證明:數(shù)列是等比數(shù)列,并求的通項公式;(2)記數(shù)列的前項和為,求.22.(10分)已知函數(shù).(1)若在上單調(diào)遞增,求實數(shù)的取值范圍;(2)若,對,恒有成立,求實數(shù)的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)正負相關(guān)的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關(guān).相關(guān)系數(shù)為負.故選:C.【點睛】本題考查變量的相關(guān)關(guān)系,考查正相關(guān)和負相關(guān)的區(qū)別.掌握正負相關(guān)的定義是解題基礎(chǔ).2、B【解析】
根據(jù)條件可知方程有且只有一個實根等價于函數(shù)的圖象與直線只有一個交點,作出圖象,數(shù)形結(jié)合即可.【詳解】解:因為條件等價于函數(shù)的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.【點睛】本題主要考查函數(shù)圖象與方程零點之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.3、B【解析】
,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算、數(shù)乘運算,考查學生的運算能力,是一道中檔題.4、D【解析】
由|AF2|=3|BF2|,可得.設(shè)直線l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點,則F2(,0),設(shè)直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【點睛】本題考查直線與雙曲線的位置關(guān)系,考查韋達定理的運用,考查向量知識,屬于中檔題.5、A【解析】
設(shè)點,則點,,利用向量數(shù)量積的坐標運算可得,利用二次函數(shù)的性質(zhì)可得最值.【詳解】解:設(shè)點,則點,,,,當時,取最小值,最小值為.故選:A.【點睛】本題考查拋物線背景下的向量的坐標運算,考查學生的計算能力,是基礎(chǔ)題.6、A【解析】
根據(jù)橢圓與雙曲線離心率的表示形式,結(jié)合和的離心率之積為,即可得的關(guān)系,進而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡可得,故選:A.【點睛】本題考查了橢圓與雙曲線簡單幾何性質(zhì)應用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎(chǔ)題.7、B【解析】
依題意,金箠由粗到細各尺重量構(gòu)成一個等差數(shù)列,則,由此利用等差數(shù)列性質(zhì)求出結(jié)果.【詳解】設(shè)金箠由粗到細各尺重量依次所成得等差數(shù)列為,設(shè)首項,則,公差,.故選B【點睛】本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.8、B【解析】
根據(jù)已知可知水面的最大高度為正方體面對角線長的一半,由此得到結(jié)論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎(chǔ)題.9、C【解析】
利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運算能力.10、C【解析】
解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.11、A【解析】
本題采用排除法:由排除選項D;根據(jù)特殊值排除選項C;由,且無限接近于0時,排除選項B;【詳解】對于選項D:由題意可得,令函數(shù),則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當,且無限接近于0時,接近于,,此時.故選項B排除;故選項:A【點睛】本題考查函數(shù)解析式較復雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號的正負等有關(guān)性質(zhì)進行逐一排除是解題的關(guān)鍵;屬于中檔題.12、D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質(zhì)的應用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由,得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結(jié)果.【詳解】因為,所以,所以.故答案為:.【點睛】本題考查三角函數(shù)化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.14、8【解析】
利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【詳解】因為(即取等號),所以最小值為.【點睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.15、【解析】
構(gòu)造函數(shù),利用導數(shù)判斷出函數(shù)的單調(diào)性,再將所求不等式變形為,利用函數(shù)的單調(diào)性即可得解.【詳解】設(shè),則,設(shè),則.當時,,此時函數(shù)單調(diào)遞減;當時,,此時函數(shù)單調(diào)遞增.所以,函數(shù)在處取得極小值,也是最小值,即,,,,即,所以,函數(shù)在上為增函數(shù),函數(shù)為上的奇函數(shù),則,,則不等式等價于,又,解得.因此,不等式的解集為.故答案為:.【點睛】本題主要考查不等式的求解,構(gòu)造函數(shù),求函數(shù)的導數(shù),利用導數(shù)和函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.綜合性較強.16、【解析】
作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數(shù)取得最小時對應的最優(yōu)解,代入目標函數(shù)計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點,平移直線,當直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,考查數(shù)形結(jié)合思想的應用,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)取的中點,連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得二面角的余弦值,進而可求得其正弦值.【詳解】(1)取中點,連接、、,且,四邊形為平行四邊形,且,、分別為、中點,且,則四邊形為平行四邊形,且,且,且,所以,四邊形為平行四邊形,且,四邊形為平行四邊形,,平面,平面,平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、,,,,設(shè)平面的法向量為,由,得,取,則,,,設(shè)平面的法向量為,由,得,取,則,,,,,因此,二面角的正弦值為.【點睛】本題考查線面平行的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.18、(1)(2)詳見解析(3)初中生平均參加公益勞動時間較長【解析】
(1)由圖表直接利用隨機事件的概率公式求解;(2)X的所有可能取值為0,1,2,3.由古典概型概率公式求概率,則分布列可求;(3)由圖表直接判斷結(jié)果.【詳解】(1)100名學生中共有男生48名,其中共有20人參加公益勞動時間在,設(shè)男生中隨機抽取一人,抽到的男生參加公益勞動時間在的事件為,那么;(2)的所有可能取值為0,1,2,3.∴;;;.∴隨機變量的分布列為:(3)由圖表可知,初中生平均參加公益勞動時間較長.【點睛】本小題主要考查古典概型的計算,考查超幾何分布的分布列的計算,屬于基礎(chǔ)題.19、(1)單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間(2)證明見解析【解析】
(1)求導,根據(jù)導數(shù)的正負判斷單調(diào)性,(2)整理,化簡為,令,求的單調(diào)性,以及,即證.【詳解】解:(1)函數(shù)定義域為,則,令,,則,當,,單調(diào)遞減;當,,單調(diào)遞增;故,,,,故函數(shù)的單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間.(2)證明,即為,因為,即證,令,則,令,則,當時,,所以在上單調(diào)遞減,則,,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當時,,令,,,可知對于恒成立,即,即,故,即證,故原不等式得證.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,利用導數(shù)證明不等式,函數(shù)的最值問題,屬于中檔題.20、(1),;(2).【解析】
(1)在曲線的參數(shù)方程中消去參數(shù),可得出曲線的普通方程,將曲線的極坐標方程變形為,進而可得出曲線的直角坐標方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數(shù)方程得,.所以,曲線的普通方程為,將曲線的極坐標方程變形為,所以,曲線的直角坐標方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點到直線的最大距離為,,因此,的面積為最大值為.【點睛】本題考查曲線的參數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工地臨時護欄安裝協(xié)議
- 古鎮(zhèn)裝飾施工合同
- 電力設(shè)施廠房施工合同
- 科技館建設(shè)民建施工合同
- 西安景區(qū)附近酒店租賃協(xié)議
- 機場航站樓空調(diào)租賃協(xié)議
- 工地用施工升降機購銷合同
- 校園建設(shè)建造師聘用合同范例
- 建筑改造施工合同封面
- 大學廣告位租賃合同
- Python語言基礎(chǔ)與應用學習通超星期末考試答案章節(jié)答案2024年
- 消除“艾梅乙”醫(yī)療歧視-從我做起
- 古代名劇鑒賞學習通超星期末考試答案章節(jié)答案2024年
- 2024年廣西公需科目一帶-路題庫參考答案
- 2024年秋國家開放大學《形勢與政策》大作業(yè):建設(shè)中華民族現(xiàn)代文明的路徑是什么?中華民族現(xiàn)代文明有哪些鮮明特質(zhì)?附答案【供參考】
- GB/T 35136-2024智能家居自動控制設(shè)備通用技術(shù)要求
- 腕管綜合征護理常規(guī)
- Unit 3 Lesson 13 At School(教學設(shè)計)-2024-2025學年冀教版(三起)英語四年級上冊
- 期末達標測試卷(試題)-2024-2025學年人教PEP版英語四年級上冊
- 抗腫瘤治療相關(guān)性心肌并發(fā)癥
- GB/T 19752-2024混合動力電動汽車動力性能試驗方法
評論
0/150
提交評論