北京郵電大學《計算機視覺》2021-2022學年第一學期期末試卷_第1頁
北京郵電大學《計算機視覺》2021-2022學年第一學期期末試卷_第2頁
北京郵電大學《計算機視覺》2021-2022學年第一學期期末試卷_第3頁
北京郵電大學《計算機視覺》2021-2022學年第一學期期末試卷_第4頁
北京郵電大學《計算機視覺》2021-2022學年第一學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁北京郵電大學《計算機視覺》

2021-2022學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的應用于農業(yè)領域,例如作物監(jiān)測和病蟲害檢測,需要對大量的田間圖像進行分析。假設我們要檢測農作物葉片上的病蟲害癥狀,以下哪種技術能夠實現(xiàn)快速、準確的檢測,并且適應不同的生長階段和環(huán)境條件?()A.基于傳統(tǒng)圖像分割和特征提取的方法B.基于深度學習的目標檢測和分類算法,針對病蟲害特征訓練C.基于光譜分析和顏色特征的方法D.基于機器視覺和模式識別的方法2、在計算機視覺的應用中,人臉識別技術受到廣泛關注。假設一個人臉識別系統(tǒng)正在進行身份驗證,以下關于人臉識別的描述,正確的是:()A.只依靠面部的幾何形狀信息就能實現(xiàn)準確的人臉識別B.光照變化和面部表情對人臉識別的準確率沒有影響C.結合深度學習模型和多模態(tài)信息,如紅外圖像,可以提高人臉識別的性能和可靠性D.人臉識別系統(tǒng)不需要考慮數(shù)據(jù)的隱私和安全問題3、計算機視覺中的表情識別旨在識別圖像或視頻中人物的表情。假設要在一個情感分析系統(tǒng)中準確識別表情,以下關于表情識別方法的描述,正確的是:()A.基于幾何特征的表情識別方法對表情的細微變化不敏感,識別準確率低B.基于紋理特征的表情識別方法能夠很好地捕捉表情的局部特征,但容易受到光照影響C.深度學習中的卷積神經網(wǎng)絡在表情識別中能夠學習到全局和局部的特征,但對大規(guī)模數(shù)據(jù)集依賴嚴重D.表情識別系統(tǒng)只適用于正面清晰的人臉表情,對于側臉和遮擋的表情無法識別4、計算機視覺中的動作識別是對視頻中人物或物體的動作進行分類和理解。假設要識別一段舞蹈視頻中的各種舞蹈動作,同時要考慮動作的速度、幅度和風格的變化。以下哪種動作識別方法在處理這種復雜的動作模式時表現(xiàn)更好?()A.基于手工特征的動作識別B.基于時空興趣點的動作識別C.基于深度學習的時空卷積網(wǎng)絡D.基于隱馬爾可夫模型的動作識別5、在計算機視覺的視頻分析中,需要處理連續(xù)的圖像幀。假設要分析一段監(jiān)控視頻中的人員行為,以下關于視頻分析方法的描述,哪一項是不正確的?()A.光流法可以用于計算相鄰幀之間的像素運動,從而跟蹤物體的運動軌跡B.可以通過對視頻幀進行分類和檢測,來識別和分析人員的行為模式C.視頻分析需要考慮時間維度上的信息,不僅僅是單個圖像幀的特征D.視頻分析只適用于簡單的場景和行為,對于復雜的多人交互場景無法進行有效的分析6、計算機視覺中的紋理分析用于描述圖像中重復出現(xiàn)的模式和結構。假設要對一塊布料的紋理進行分析,以判斷其材質和質量,同時布料可能存在褶皺和變形。以下哪種紋理分析方法在處理這種復雜情況時更為準確?()A.統(tǒng)計紋理分析B.結構紋理分析C.基于模型的紋理分析D.基于深度學習的紋理分析7、計算機視覺中的光流估計是計算圖像中像素的運動信息。以下關于光流估計的敘述,不正確的是()A.光流估計可以用于視頻中的運動分析、目標跟蹤和動作識別等任務B.基于深度學習的光流估計方法在精度和速度上都有了很大的提升C.光流估計只對勻速運動的物體有效,對于復雜的非勻速運動估計不準確D.光流估計的結果可以為后續(xù)的計算機視覺任務提供重要的運動線索8、計算機視覺中的醫(yī)學圖像分析具有重要的臨床應用價值。假設要從一組X光片中檢測出病變區(qū)域,同時要區(qū)分不同類型的病變。以下哪種技術和方法在醫(yī)學圖像分析中最為常用和有效?()A.形態(tài)學操作B.圖像分割與分類C.特征提取與選擇D.以上方法綜合運用9、在計算機視覺的目標跟蹤任務中,需要在連續(xù)的圖像幀中持續(xù)跟蹤一個特定的目標。假設要跟蹤一個在運動場上快速移動且形狀變化的運動員,同時存在其他相似物體的干擾。以下哪種目標跟蹤算法在這種具有挑戰(zhàn)性的場景下表現(xiàn)更佳?()A.基于卡爾曼濾波的跟蹤B.基于粒子濾波的跟蹤C.基于深度學習的跟蹤D.基于均值漂移的跟蹤10、在計算機視覺的圖像風格遷移任務中,假設要將一張照片轉換為具有特定藝術風格的圖像,以下哪種技術可能對生成逼真的風格效果起到關鍵作用?()A.對抗生成網(wǎng)絡(GAN)B.自編碼器(Autoencoder)C.變分自編碼器(VAE)D.玻爾茲曼機(BoltzmannMachine)11、當利用計算機視覺技術對醫(yī)學影像(如X光、CT等)進行分析,輔助醫(yī)生進行疾病診斷時,需要從大量的圖像數(shù)據(jù)中提取有價值的特征。以下哪種特征提取方法在醫(yī)學影像分析中可能具有較高的應用價值?()A.基于形狀的特征提取B.基于紋理的特征提取C.基于深度學習的自動特征學習D.基于顏色的特征提取12、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中的應用可以提供更沉浸式的體驗。假設要在VR環(huán)境中實時跟蹤用戶的頭部運動并相應地更新場景,以下關于VR/AR計算機視覺應用的描述,正確的是:()A.簡單的基于傳感器的跟蹤方法能夠滿足VR中高精度的頭部運動跟蹤需求B.計算機視覺在VR/AR中的應用主要關注圖像生成,而不是跟蹤和定位C.結合視覺特征提取和深度學習的頭部運動跟蹤算法可以實現(xiàn)低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對計算機視覺算法的性能沒有影響13、在計算機視覺中,圖像超分辨率重建是提高圖像分辨率和質量的技術。以下關于圖像超分辨率重建的敘述,不正確的是()A.圖像超分辨率重建可以通過插值、基于模型的方法或深度學習方法來實現(xiàn)B.深度學習方法在圖像超分辨率重建中能夠生成更清晰、逼真的細節(jié)C.圖像超分辨率重建在醫(yī)學圖像、衛(wèi)星圖像和監(jiān)控圖像等領域有重要的應用D.圖像超分辨率重建可以無限制地提高圖像的分辨率,不受原始圖像信息的限制14、在計算機視覺的行人檢測任務中,假設要在一個擁擠的街道場景中準確檢測出行人,場景中存在光照變化、人群遮擋和復雜背景。以下哪種特征表示方法在這種情況下可能更具魯棒性?()A.基于形狀的特征,如行人的輪廓B.基于顏色的特征,如行人衣服的顏色C.基于深度學習的特征,通過卷積神經網(wǎng)絡自動學習D.不提取任何特征,直接對原始圖像進行檢測15、計算機視覺在安防監(jiān)控領域有重要應用。假設要通過攝像頭監(jiān)控一個公共場所,以下關于計算機視覺在安防監(jiān)控中的應用描述,哪一項是不正確的?()A.可以實時檢測異常行為,如人群聚集、奔跑等B.能夠對人員進行身份識別和認證C.計算機視覺系統(tǒng)可以獨立完成所有的安防監(jiān)控任務,不需要人工干預D.與其他安防設備和系統(tǒng)集成,提高整體的安全性和防范能力16、在一個基于計算機視覺的農業(yè)監(jiān)測系統(tǒng)中,需要對農作物的生長狀況進行評估,例如判斷葉片的顏色、形狀和病蟲害情況。以下哪種圖像分析方法可能對農作物監(jiān)測較為有效?()A.顏色空間轉換B.形態(tài)學分析C.紋理分析D.以上都是17、物體檢測是計算機視覺中的一項關鍵任務。假設一個智能監(jiān)控系統(tǒng)需要檢測場景中的特定物體,如背包、自行車等。以下關于物體檢測算法的描述,哪一項是不正確的?()A.基于深度學習的物體檢測算法能夠同時檢測多個物體,并給出它們的位置和類別B.可以通過滑動窗口的方法在圖像中搜索可能的物體區(qū)域,然后進行分類判斷C.物體檢測算法需要對大量的標注圖像進行訓練,以學習不同物體的特征D.無論物體的大小、形狀和顏色如何變化,物體檢測算法都能準確檢測到18、計算機視覺中的場景理解任務旨在理解圖像或視頻中的整體場景信息。假設要理解一張城市街道的圖片中的場景。以下關于場景理解的描述,哪一項是錯誤的?()A.可以通過對物體、人物和環(huán)境的分析來理解場景的語義信息B.深度學習中的語義分割技術可以幫助區(qū)分場景中的不同區(qū)域和物體類別C.場景理解只需要考慮圖像中的視覺元素,不需要考慮上下文和先驗知識D.可以結合地理信息和時間信息,進一步豐富對場景的理解19、圖像分割是將圖像分成不同的區(qū)域,每個區(qū)域具有相似的特征。假設要對醫(yī)學圖像進行器官分割,以下關于圖像分割方法的描述,哪一項是不正確的?()A.基于閾值的分割方法簡單直接,但對于復雜圖像效果往往不佳B.基于邊緣檢測的分割方法通過尋找圖像中的邊緣來劃分區(qū)域,但容易受到噪聲影響C.基于深度學習的語義分割方法能夠實現(xiàn)像素級別的分類,效果較好,但計算量較大D.圖像分割只適用于灰度圖像,對于彩色圖像無法進行有效的分割20、在計算機視覺中,三維重建是從二維圖像恢復物體的三維結構。以下關于三維重建的敘述,不正確的是()A.可以通過多視圖幾何、結構光或深度學習方法進行三維重建B.三維重建在虛擬現(xiàn)實、文物保護和工業(yè)設計等領域有著廣泛的應用C.三維重建的結果總是精確無誤的,能夠完全還原物體的真實三維結構D.噪聲、遮擋和圖像質量等因素會對三維重建的結果產生影響21、計算機視覺中的視頻目標跟蹤中,假設目標在跟蹤過程中發(fā)生了嚴重的形變。以下關于處理目標形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應地處理目標形變,保持跟蹤的準確性B.特征點跟蹤方法對目標形變不敏感,在這種情況下仍然能夠可靠跟蹤C.深度學習中的孿生網(wǎng)絡在目標形變時容易丟失目標,無法繼續(xù)跟蹤D.結合多種特征和模型更新策略可以提高對目標形變的跟蹤魯棒性22、在計算機視覺的應用于自動駕駛領域,需要實時檢測道路上的交通標志和標線。假設車輛在高速行駛中,以下哪種技術能夠快速準確地檢測到各種交通標志,并且對光照變化和遮擋具有較強的魯棒性?()A.基于顏色和形狀特征的檢測方法B.基于深度學習的檢測方法,結合多尺度特征C.基于邊緣檢測和形態(tài)學操作的方法D.基于模板匹配和特征點匹配的方法23、圖像分割是將圖像細分為不同的區(qū)域或對象。假設我們需要對醫(yī)學圖像中的腫瘤進行精確分割,以輔助醫(yī)生進行診斷和治療。在這種對精度要求很高的應用中,以下哪種圖像分割方法可能更合適?()A.基于閾值的圖像分割B.基于邊緣檢測的圖像分割C.基于區(qū)域生長的圖像分割D.基于深度學習的語義分割算法,如U-Net24、在計算機視覺的目標識別任務中,假設要識別不同種類的水果。以下關于應對類內差異和類間相似性的策略,哪一項是不正確的?()A.增加訓練數(shù)據(jù)的多樣性,包括不同角度、大小和成熟度的水果B.提取更具區(qū)分性的特征,減少類內差異和類間相似性的影響C.降低模型的復雜度,避免過度擬合類內差異和類間相似性D.忽略類內差異和類間相似性,依靠模型的自動適應能力25、在計算機視覺的三維重建任務中,假設要從一組二維圖像恢復出物體的三維結構。以下關于三維重建方法的描述,正確的是:()A.基于立體視覺的方法需要多視角的圖像,并且對相機的標定精度要求不高B.結構光方法能夠快速準確地獲取物體表面的三維信息,但對環(huán)境光敏感C.從運動中恢復結構(SfM)方法只適用于靜態(tài)場景,無法處理動態(tài)物體D.所有的三維重建方法都能夠生成高精度的、完整的物體三維模型26、在計算機視覺中,以下哪種方法常用于圖像的語義分割中的多尺度特征融合?()A.特征金字塔B.空洞卷積C.注意力機制D.以上都是27、在計算機視覺的目標識別任務中,除了識別目標的類別,還需要確定目標的位置和大小。假設我們要在一幅復雜的圖像中識別多個不同大小的物體,以下哪種目標識別算法能夠適應不同尺度的目標?()A.基于滑動窗口的目標識別算法B.基于特征金字塔的目標識別算法C.基于注意力機制的目標識別算法D.基于模板匹配的目標識別算法28、假設要開發(fā)一個能夠對指紋進行識別和認證的計算機視覺系統(tǒng),以下哪種特征提取和匹配方法可能在指紋識別中具有較高的準確性?()A.細節(jié)點提取B.方向場提取C.紋理特征提取D.以上都是29、在計算機視覺的場景理解任務中,需要理解整個圖像的語義信息。假設要分析一張城市街道的圖像中包含的物體和它們之間的關系,以下關于場景理解方法的描述,正確的是:()A.單獨對圖像中的每個物體進行識別和分類就能實現(xiàn)場景理解B.忽略圖像中的上下文信息和空間布局對場景理解沒有影響C.利用深度學習中的語義分割和圖模型可以更好地理解場景的結構和語義關系D.場景理解只適用于簡單的室內場景,對于復雜的戶外場景無法處理30、在計算機視覺的目標跟蹤任務中,需要在視頻序列中持續(xù)跟蹤特定的目標。假設我們要跟蹤一個在人群中快速移動的人物,以下哪種目標跟蹤算法能夠更好地處理目標的外觀變化和遮擋情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于深度學習的跟蹤算法,如Siamese網(wǎng)絡D.基于均值漂移的跟蹤算法二、應用題(本大題共5個小題,共25分)1、(本題5分)通過計算機視覺,對不同類型的面塑作品進行分類。2、(本題5分)運用圖像識別算法,對不同類型的家具圖像進行分類和識別。3、(本題5分)開發(fā)一個能夠識別不同種類候鳥的程序。4、(本題5分)通過圖像分割技術,將衛(wèi)星圖像中的沙漠和綠洲區(qū)域進行劃分。5、(本題5分)基于深度學習,實現(xiàn)對田徑比賽中運動員起跑反應時間的檢測。三、簡答題(本大題共5個小題,共25分)1、(本題5分)解釋計算機視覺中的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論