版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省成都市雙流縣棠湖中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)雙曲線的右焦點(diǎn)F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過(guò)雙曲線C的左頂點(diǎn),則雙曲線C的離心率為()A. B. C.2 D.2.已知實(shí)數(shù),滿足約束條件,則目標(biāo)函數(shù)的最小值為A. B.C. D.3.已知向量,,則與的夾角為()A. B. C. D.4.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點(diǎn)所在的區(qū)間是()A. B. C. D.5.已知平面向量,,,則實(shí)數(shù)x的值等于()A.6 B.1 C. D.6.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.7.已知等差數(shù)列中,,,則數(shù)列的前10項(xiàng)和()A.100 B.210 C.380 D.4008.山東煙臺(tái)蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽(yù)國(guó)內(nèi)外.據(jù)統(tǒng)計(jì),煙臺(tái)蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內(nèi)的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.95449.函數(shù)的大致圖象為()A. B.C. D.10.已知復(fù)數(shù)是純虛數(shù),其中是實(shí)數(shù),則等于()A. B. C. D.11.若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.已知的內(nèi)角、、的對(duì)邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點(diǎn)和點(diǎn)為某個(gè)等腰三角形的三個(gè)頂點(diǎn),則雙曲線C的離心率為________.14.已知為雙曲線的左、右焦點(diǎn),過(guò)點(diǎn)作直線與圓相切于點(diǎn),且與雙曲線的右支相交于點(diǎn),若是上的一個(gè)靠近點(diǎn)的三等分點(diǎn),且,則四邊形的面積為_______.15.已知是拋物線上一點(diǎn),是圓關(guān)于直線對(duì)稱的曲線上任意一點(diǎn),則的最小值為________.16.記為數(shù)列的前項(xiàng)和.若,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).(1)若,證明在區(qū)間上沒(méi)有零點(diǎn);(2)在上恒成立,求的取值范圍.18.(12分)已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).(1)討論函數(shù)的單調(diào)性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.19.(12分)為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績(jī)分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.(1)求的值;(2)填寫下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?文科生理科生合計(jì)獲獎(jiǎng)6不獲獎(jiǎng)合計(jì)400(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)在以為頂點(diǎn)的五面體中,底面為菱形,,,,二面角為直二面角.(Ⅰ)證明:;(Ⅱ)求二面角的余弦值.21.(12分)隨著現(xiàn)代社會(huì)的發(fā)展,我國(guó)對(duì)于環(huán)境保護(hù)越來(lái)越重視,企業(yè)的環(huán)保意識(shí)也越來(lái)越強(qiáng).現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測(cè)系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測(cè)費(fèi)用預(yù)算定為1200萬(wàn)元,日常全天候開啟3套環(huán)境監(jiān)測(cè)系統(tǒng),若至少有2套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),則立即同時(shí)啟動(dòng)另外2套系統(tǒng)進(jìn)行1小時(shí)的監(jiān)測(cè),且后啟動(dòng)的這2套監(jiān)測(cè)系統(tǒng)中只要有1套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),也立即檢查污染源處理系統(tǒng).設(shè)每個(gè)時(shí)間段(以1小時(shí)為計(jì)量單位)被每套系統(tǒng)監(jiān)測(cè)出排放超標(biāo)的概率均為,且各個(gè)時(shí)間段每套系統(tǒng)監(jiān)測(cè)出排放超標(biāo)情況相互獨(dú)立.(1)當(dāng)時(shí),求某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測(cè)系統(tǒng)運(yùn)行成本為300元/小時(shí)(不啟動(dòng)則不產(chǎn)生運(yùn)行費(fèi)用),除運(yùn)行費(fèi)用外,所有的環(huán)境監(jiān)測(cè)系統(tǒng)每年的維修和保養(yǎng)費(fèi)用需要100萬(wàn)元.現(xiàn)以此方案實(shí)施,問(wèn)該企業(yè)的環(huán)境監(jiān)測(cè)費(fèi)用是否會(huì)超過(guò)預(yù)算(全年按9000小時(shí)計(jì)算)?并說(shuō)明理由.22.(10分)如圖,過(guò)點(diǎn)且平行與x軸的直線交橢圓于A、B兩點(diǎn),且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)M且斜率為正的直線交橢圓于段C、D,直線AC、BD分別交直線于點(diǎn)E、F,求證:是定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由得F是弦AB的中點(diǎn).進(jìn)而得AB垂直于x軸,得,再結(jié)合關(guān)系求解即可【詳解】因?yàn)?,所以F是弦AB的中點(diǎn).且AB垂直于x軸.因?yàn)橐訟B為直徑的圓經(jīng)過(guò)雙曲線C的左頂點(diǎn),所以,即,則,故.故選:C【點(diǎn)睛】本題是對(duì)雙曲線的漸近線以及離心率的綜合考查,是考查基本知識(shí),屬于基礎(chǔ)題.2、B【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,當(dāng)位于時(shí),此時(shí)的斜率最小,此時(shí).故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點(diǎn)之間的斜率公式的計(jì)算,利用z的幾何意義,通過(guò)數(shù)形結(jié)合是解決本題的關(guān)鍵.3、B【解析】
由已知向量的坐標(biāo),利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.4、B【解析】
根據(jù)二次函數(shù)圖象的對(duì)稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點(diǎn)函數(shù)值正負(fù),即可求出結(jié)論.【詳解】∵,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對(duì)稱軸為,,,∵,所以在上單調(diào)遞增.又因?yàn)椋院瘮?shù)的零點(diǎn)所在的區(qū)間是.故選:B.【點(diǎn)睛】本題考查二次函數(shù)的圖象及函數(shù)的零點(diǎn),屬于基礎(chǔ)題.5、A【解析】
根據(jù)向量平行的坐標(biāo)表示即可求解.【詳解】,,,,即,故選:A【點(diǎn)睛】本題主要考查了向量平行的坐標(biāo)運(yùn)算,屬于容易題.6、A【解析】
對(duì)復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計(jì)算得到,從而得到虛部為2.【詳解】因?yàn)椋詚的虛部為2.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計(jì)算過(guò)程要注意.7、B【解析】
設(shè)公差為,由已知可得,進(jìn)而求出的通項(xiàng)公式,即可求解.【詳解】設(shè)公差為,,,,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的基本量計(jì)算以及前項(xiàng)和,屬于基礎(chǔ)題.8、C【解析】
根據(jù)服從的正態(tài)分布可得,,將所求概率轉(zhuǎn)化為,結(jié)合正態(tài)分布曲線的性質(zhì)可求得結(jié)果.【詳解】由題意,,,則,,所以,.故果實(shí)直徑在內(nèi)的概率為0.8185.故選:C【點(diǎn)睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問(wèn)題,考查了正態(tài)曲線的對(duì)稱性,屬于基礎(chǔ)題.9、A【解析】
利用特殊點(diǎn)的坐標(biāo)代入,排除掉C,D;再由判斷A選項(xiàng)正確.【詳解】,排除掉C,D;,,,.故選:A.【點(diǎn)睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問(wèn)題,代入特殊點(diǎn),采用排除法求解是解決這類問(wèn)題的一種常用方法,屬于中檔題.10、A【解析】
對(duì)復(fù)數(shù)進(jìn)行化簡(jiǎn),由于為純虛數(shù),則化簡(jiǎn)后的復(fù)數(shù)形式中,實(shí)部為0,得到的值,從而得到復(fù)數(shù).【詳解】因?yàn)闉榧兲摂?shù),所以,得所以.故選A項(xiàng)【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,純虛數(shù)的概念,屬于簡(jiǎn)單題.11、B【解析】
復(fù)數(shù),在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復(fù)平面對(duì)應(yīng)的點(diǎn)在第二象限,得,則.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.12、B【解析】
延長(zhǎng)到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【詳解】解:延長(zhǎng)到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點(diǎn)睛】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由等腰三角形及雙曲線的對(duì)稱性可知或,進(jìn)而利用兩點(diǎn)間距離公式求解即可.【詳解】由題設(shè)雙曲線的左、右焦點(diǎn)分別為,,因?yàn)樽蟆⒂医裹c(diǎn)和點(diǎn)為某個(gè)等腰三角形的三個(gè)頂點(diǎn),當(dāng)時(shí),,由可得,等式兩邊同除可得,解得(舍);當(dāng)時(shí),,由可得,等式兩邊同除可得,解得,故答案為:【點(diǎn)睛】本題考查求雙曲線的離心率,考查雙曲線的幾何性質(zhì)的應(yīng)用,考查分類討論思想.14、60【解析】
根據(jù)題中給的信息與雙曲線的定義可求得與,再在中,由余弦定理求解得,繼而得到各邊的長(zhǎng)度,再根據(jù)計(jì)算求解即可.【詳解】如圖所示:設(shè)雙曲線的半焦距為.因?yàn)?,,所以由勾股定理,得.所以.因?yàn)槭巧弦粋€(gè)靠近點(diǎn)的三等分點(diǎn),是的中點(diǎn),所以.由雙曲線的定義可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.則.則,得.則的底邊上的高為.所以.故答案為:60【點(diǎn)睛】本題主要考查了雙曲線中利用定義與余弦定理求解線段長(zhǎng)度與面積的方法,需要根據(jù)雙曲線的定義表示各邊的長(zhǎng)度,再在合適的三角形里面利用余弦定理求得基本量的關(guān)系.屬于難題.15、【解析】
由題意求出圓的對(duì)稱圓的圓心坐標(biāo),求出對(duì)稱圓的圓坐標(biāo)到拋物線上的點(diǎn)的距離的最小值,減去半徑即可得到的最小值.【詳解】假設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)為,則有,解方程組可得,所以曲線的方程為,圓心為,設(shè),則,又,所以,,即,所以,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)動(dòng)點(diǎn)距離的最小值問(wèn)題,涉及到的知識(shí)點(diǎn)有點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),點(diǎn)與圓上點(diǎn)的距離的最小值為到圓心的距離減半徑,屬于中檔題目.16、1【解析】
由已知數(shù)列遞推式可得數(shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,再由等比數(shù)列的前項(xiàng)和公式求解.【詳解】由,得,.且,則,即.?dāng)?shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,則.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項(xiàng)和,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析(2)【解析】
(1)先利用導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式求出,再由函數(shù)的導(dǎo)數(shù)可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒(méi)有零點(diǎn);(2)由題意可將轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論研究其在上的單調(diào)性,由,即可求出的取值范圍.【詳解】(1)若,則,,設(shè),則,,,故函數(shù)是奇函數(shù).當(dāng)時(shí),,,這時(shí),又函數(shù)是奇函數(shù),所以當(dāng)時(shí),.綜上,當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),函數(shù)單調(diào)遞減.又,,故在區(qū)間上恒成立,所以在區(qū)間上沒(méi)有零點(diǎn).(2),由,所以恒成立,若,則,設(shè),.故當(dāng)時(shí),,又,所以當(dāng)時(shí),,滿足題意;當(dāng)時(shí),有,與條件矛盾,舍去;當(dāng)時(shí),令,則,又,故在區(qū)間上有無(wú)窮多個(gè)零點(diǎn),設(shè)最小的零點(diǎn)為,則當(dāng)時(shí),,因此在上單調(diào)遞增.,所以.于是,當(dāng)時(shí),,得,與條件矛盾.故的取值范圍是.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式的應(yīng)用,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論思想和放縮法的應(yīng)用,難度較大,意在考查學(xué)生的數(shù)學(xué)建模能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.18、(1)函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;(2).【解析】
(1)由題可得,結(jié)合的范圍判斷的正負(fù),即可求解;(2)結(jié)合導(dǎo)數(shù)及函數(shù)的零點(diǎn)的判定定理,分類討論進(jìn)行求解【詳解】(1),①當(dāng)時(shí),,∴函數(shù)在內(nèi)單調(diào)遞增;②當(dāng)時(shí),令,解得或,當(dāng)或時(shí),,則單調(diào)遞增,當(dāng)時(shí),,則單調(diào)遞減,∴函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為(2)(Ⅰ)當(dāng)時(shí),所以在上無(wú)零點(diǎn);(Ⅱ)當(dāng)時(shí),,①若,即,則是的一個(gè)零點(diǎn);②若,即,則不是的零點(diǎn)(Ⅲ)當(dāng)時(shí),,所以此時(shí)只需考慮函數(shù)在上零點(diǎn)的情況,因?yàn)?所以①當(dāng)時(shí),在上單調(diào)遞增。又,所以(?。┊?dāng)時(shí),在上無(wú)零點(diǎn);(ⅱ)當(dāng)時(shí),,又,所以此時(shí)在上恰有一個(gè)零點(diǎn);②當(dāng)時(shí),令,得,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)?,所以此時(shí)在上恰有一個(gè)零點(diǎn),綜上,【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間,考查利用導(dǎo)數(shù)處理零點(diǎn)個(gè)數(shù)問(wèn)題,考查運(yùn)算能力,考查分類討論思想19、(1),,.(2)填表見解析;在犯錯(cuò)誤的概率不超過(guò)0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)(3)詳見解析【解析】
(1)根據(jù)頻率分步直方圖和構(gòu)成以2為公比的等比數(shù)列,即可得解;(2)由頻率分步直方圖算出相應(yīng)的頻數(shù)即可填寫列聯(lián)表,再用的計(jì)算公式運(yùn)算即可;(3)獲獎(jiǎng)的概率為,隨機(jī)變量,再根據(jù)二項(xiàng)分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因?yàn)闃?gòu)成以2為公比的等比數(shù)列,所以,解得,所以,.故,,.(2)獲獎(jiǎng)的人數(shù)為人,因?yàn)閰⒖嫉奈目粕c理科生人數(shù)之比為,所以400人中文科生的數(shù)量為,理科生的數(shù)量為.由表可知,獲獎(jiǎng)的文科生有6人,所以獲獎(jiǎng)的理科生有人,不獲獎(jiǎng)的文科生有人.于是可以得到列聯(lián)表如下:文科生理科生合計(jì)獲獎(jiǎng)61420不獲獎(jiǎng)74306380合計(jì)80320400所以在犯錯(cuò)誤的概率不超過(guò)0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān).(3)由(2)可知,獲獎(jiǎng)的概率為,的可能取值為0,1,2,,,,分布列如下:012數(shù)學(xué)期望為.【點(diǎn)睛】本題考查頻率分布直方圖、統(tǒng)計(jì)案例和離散型隨機(jī)變量的分布列與期望,考查學(xué)生的閱讀理解能力和計(jì)算能力,屬于中檔題.20、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)連接交于點(diǎn),取中點(diǎn),連結(jié),證明平面得到答案.(Ⅱ)分別以為軸建立如圖所示的空間直角坐標(biāo)系,平面的法向量為,平面的法向量為,計(jì)算夾角得到答案.【詳解】(Ⅰ)連接交于點(diǎn),取中點(diǎn),連結(jié)因?yàn)闉榱庑危?因?yàn)?,所?因?yàn)槎娼菫橹倍娼?,所以平面平面,且平面平面,所以平面所以因?yàn)樗允瞧叫兴倪呅?,所?所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知兩兩垂直,分別以為軸建立如圖所示的空間直角坐標(biāo)系.設(shè)設(shè)平面的法向量為,由,取.平面的法向量為.所以二面角余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.21、(1);(2)不會(huì)超過(guò)預(yù)算,理由見解析【解析】
(1)求出某個(gè)時(shí)間
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 云服務(wù)安全認(rèn)證-洞察分析
- 網(wǎng)絡(luò)安全背景下的在線教育監(jiān)管政策分析-洞察分析
- 用戶體驗(yàn)反饋策略-洞察分析
- 《建設(shè)工程造價(jià)基》課件
- 加強(qiáng)餐飲行業(yè)食品安全生產(chǎn)規(guī)范的措施研究
- 辦公環(huán)境的色彩運(yùn)用對(duì)員工工作效率的影響研究
- 企業(yè)如何在經(jīng)濟(jì)新常態(tài)下實(shí)施綠色經(jīng)營(yíng)戰(zhàn)略
- 2025雇傭合同范本
- 2025京津冀勞動(dòng)合同參考文本(標(biāo)準(zhǔn)版)
- 2025共享設(shè)備租賃合同范文
- 社會(huì)組織管理概論全套ppt課件(完整版)
- 新生兒復(fù)蘇技能操作課件
- DB37∕T 5085-2016 組合鋁合金模板工程技術(shù)規(guī)程
- 生和碼頭港口設(shè)施維護(hù)管理制度(3篇)
- 《植物生理學(xué)》課件第三章+植物的光合作用
- 重慶市勞動(dòng)人事爭(zhēng)議調(diào)解仲裁
- 高等學(xué)校建筑學(xué)專業(yè)本科(五年制)教育評(píng)估標(biāo)準(zhǔn)
- 鋁合金理論重量表
- 四年級(jí)上冊(cè)英語(yǔ)期末復(fù)習(xí)課件綜合復(fù)習(xí)及檢測(cè)講義 牛津上海版一起
- 2020年污水處理廠設(shè)備操作維護(hù)必備
- LSS-250B 純水冷卻器說(shuō)明書
評(píng)論
0/150
提交評(píng)論