版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
西藏自治區(qū)林芝一中2025屆高三第二次診斷性檢測數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù)(是虛數(shù)單位),則復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.3.甲乙兩人有三個不同的學習小組,,可以參加,若每人必須參加并且僅能參加一個學習小組,則兩人參加同一個小組的概率為()A.B.C.D.4.已知復數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.5.若集合,,則()A. B. C. D.6.已知,若對任意,關于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是()A. B. C. D.7.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④8.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個數(shù)為()A.4 B.3 C.2 D.19.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.10.若表示不超過的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.811.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應填入A. B.C. D.12.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)(即質數(shù))的和”,如,.在不超過20的素數(shù)中,隨機選取兩個不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對二、填空題:本題共4小題,每小題5分,共20分。13.在面積為的中,,若點是的中點,點滿足,則的最大值是______.14.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.15.已知兩個單位向量滿足,則向量與的夾角為_____________.16.數(shù)列的前項和為,則數(shù)列的前項和_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.18.(12分)設等差數(shù)列的首項為0,公差為a,;等差數(shù)列的首項為0,公差為b,.由數(shù)列和構造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設,,請計算,,;(2)設,,試求,的表達式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設,,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.19.(12分)已知函數(shù).(1)若關于的不等式的整數(shù)解有且僅有一個值,當時,求不等式的解集;(2)已知,若,使得成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù),其中為自然對數(shù)的底數(shù),.(1)若曲線在點處的切線與直線平行,求的值;(2)若,問函數(shù)有無極值點?若有,請求出極值點的個數(shù);若沒有,請說明理由.21.(12分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現(xiàn)統(tǒng)計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數(shù)表:亮燈時長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設表示這10000盞燈在某一時刻亮燈的數(shù)目.①求的數(shù)學期望和方差;②若隨機變量滿足,則認為.假設當時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結果保留為整數(shù)).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.22.(10分)選修4-4:坐標系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.(1)寫出的極坐標方程和的直角坐標方程;(2)已知點、的極坐標分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
將整理成的形式,得到復數(shù)所對應的的點,從而可選出所在象限.【詳解】解:,所以所對應的點為在第一象限.故選:A.【點睛】本題考查了復數(shù)的乘法運算,考查了復數(shù)對應的坐標.易錯點是誤把當成進行計算.2、A【解析】
由題意可知直線過定點即為圓心,由此得到坐標的關系,再根據點差法得到直線的斜率與坐標的關系,由此化簡并求解出離心率的取值范圍.【詳解】設,且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【點睛】本題考查橢圓與圓的綜合應用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設而不求”的目的,大大簡化運算.3、A【解析】依題意,基本事件的總數(shù)有種,兩個人參加同一個小組,方法數(shù)有種,故概率為.4、A【解析】
把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎題.5、B【解析】
根據正弦函數(shù)的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.6、B【解析】
構造函數(shù)(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數(shù)解,構造函數(shù),,通過導數(shù)研究單調性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結果.【詳解】構造函數(shù)(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數(shù)x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【點睛】本題考查導數(shù)在判斷函數(shù)單調性中的應用,考查不等式成立問題中求解參數(shù)問題,考查學生分析問題的能力和邏輯推理能力,難度較難.7、D【解析】
根據面面垂直的判定定理可判斷①;根據空間面面平行的判定定理可判斷②;根據線面平行的判定定理可判斷③;根據面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當,則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎題.8、A【解析】
由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項.【點睛】考查集合并集運算,屬于簡單題.9、A【解析】
根據題意,可得幾何體,利用體積計算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點睛】本題考查了常見幾何體的三視圖和體積計算,屬于基礎題.10、B【解析】
求出,,,,,,判斷出是一個以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個以周期為6的周期數(shù)列,則.故選:B.【點睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應用.11、C【解析】
由于中正項與負項交替出現(xiàn),根據可排除選項A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應填入,故選C.12、A【解析】
首先確定不超過的素數(shù)的個數(shù),根據古典概型概率求解方法計算可得結果.【詳解】不超過的素數(shù)有,,,,,,,,共個,從這個素數(shù)中任選個,有種可能;其中選取的兩個數(shù),其和等于的有,,共種情況,故隨機選出兩個不同的數(shù),其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由任意三角形面積公式與構建關系表示|AB||AC|,再由已知與平面向量的線性運算、平面向量數(shù)量積的運算轉化,最后由重要不等式求得最值.【詳解】由△ABC的面積為得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①與②的平方和得:|AB||AC|=,又點M是AB的中點,點N滿足,所以,當且僅當時,取等號,即的最大值是為.故答案為:【點睛】本題考查平面向量中由線性運算表示未知向量,進而由重要不等式求最值,屬于中檔題.14、1【解析】
按照個位上的9元的支付情況分類,三個數(shù)位上的錢數(shù)分步計算,相加即可.【詳解】9元的支付有兩種情況,或者,①當9元采用方式支付時,200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;②當9元采用方式支付時:200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;所以總的支付方式共有種.故答案為:1.【點睛】本題考查了分類加法計數(shù)原理和分步乘法計數(shù)原理,屬于中檔題.做題時注意分類做到不重不漏,分步做到步驟完整.15、【解析】
由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數(shù)量積的計算和夾角的計算,意在考查學生對這些知識的理解掌握水平.16、【解析】
解:兩式作差,得,經過檢驗得出數(shù)列的通項公式,進而求得的通項公式,裂項相消求和即可.【詳解】解:兩式作差,得化簡得,檢驗:當n=1時,,所以數(shù)列是以2為首項,2為公比的等比數(shù)列;,,令故填:.【點睛】本題考查求數(shù)列的通項公式,裂項相消求數(shù)列的前n項和,解題過程中需要注意n的范圍以及對特殊項的討論,側重考查運算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)取中點,連接,,通過證明,得,結合可證線面垂直,繼而可證面面垂直.(2)設,建立空間直角坐標系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點,連接,,由已知可得,,,∵側面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設,則,建立如圖所示空間直角坐標系,則,,,,,,,,設平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時,常建立空間直角坐標系,通過求面的法向量、線的方向向量,繼而求解.特別地,對于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個向量夾角的余弦值為線面角的正弦值.18、(1)(2)詳見解析(3)29【解析】
(1)將,代入,可求出,,可代入求,,可求結果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數(shù),考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數(shù).反證法:假設集合中任何一個元素,都不是7的倍數(shù),則集合中每一元素關于7的余數(shù)可以為1,2,3,4,5,6,又因為集合中共有7個元素,所以集合中至少存在兩個元素關于7的余數(shù)相同,不妨設為,,其中,,.則這兩個元素的差為7的倍數(shù),即,所以,與矛盾,所以假設不成立,即原命題成立.即集合中至少有一元素是7的倍數(shù),不妨設該元素為,,,則存在,使,,,即,,,由已證可知,若,則存在,,使,而,所以為負整數(shù),設,則,且,,,,所以,當,時,對于整數(shù),若,則成立.(3)下面用反證法證明:若對于整數(shù),,則,假設命題不成立,即,且.則對于整數(shù),存在,,,,,使成立,整理,得,又因為,,所以且是7的倍數(shù),因為,,所以,所以矛盾,即假設不成立.所以對于整數(shù),若,則,又由第二問,對于整數(shù),則,所以的最大值,就是集合中元素的最大值,又因為,,,,所以.【點睛】本題考查數(shù)列的綜合應用,以及反證法,求最值,屬于難題.19、(1)(2)【解析】
(1)求解不等式,結合整數(shù)解有且僅有一個值,可得,分類討論,求解不等式,即得解;(2)轉化,使得成立為,利用不等式性質,求解二次函數(shù)最小值,代入解不等式即可.【詳解】(1)不等式,即,所以,由,解得.因為,所以,當時,,不等式等價于或或即或或,故,故不等式的解集為.(2)因為,由,可得,又由,使得成立,則,解得或.故實數(shù)的取值范圍為.【點睛】本題考查了絕對值不等式的求解和恒成立問題,考查了學生轉化劃歸,分類討論,數(shù)學運算的能力,屬于中檔題.20、(1)(2)沒有,理由見解析【解析】
(1)求導,研究函數(shù)在x=0處的導數(shù),等于切線斜率,即得解;(2)對f(x)求導,構造,可證得,得到,即得解【詳解】(1)由題意得,∵曲線在點處的切線與直線平行,∴切線的斜率為,解得.(2)當時,,,設,則,則函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基礎會計課件
- 單位管理制度展示合集員工管理十篇
- 單位管理制度展示大全人事管理篇
- 電子行業(yè)年度策略報告:科技自立AI具能
- 單位管理制度品讀選集【人力資源管理篇】
- 2024年江蘇工程職業(yè)技術學院單招職業(yè)技能測試題庫附答案
- 遼陽檢驗檢測儀器項目投資分析報告
- 2025外來員工勞動合同「版」
- Unit 2 單元課后培優(yōu)練(原卷版)
- 山東發(fā)電機及發(fā)電機組制造市場前景及投資研究報告
- 愛上國樂智慧樹知到答案章節(jié)測試2023年東華理工大學
- 高中新教材化學必修一課后習題答案(人教版)
- GB/T 19326-2022鍛制支管座
- GB/T 9740-2008化學試劑蒸發(fā)殘渣測定通用方法
- GB/T 7424.1-1998光纜第1部分:總規(guī)范
- 拘留所教育課件02
- 兒童營養(yǎng)性疾病管理登記表格模板及專案表格模板
- 天津市新版就業(yè)、勞動合同登記名冊
- 數(shù)學分析知識點的總結
- 2023年重癥醫(yī)學科護理工作計劃
- 年會抽獎券可編輯模板
評論
0/150
提交評論