




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆貴州省百校大聯(lián)考高三最后一模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是()A. B.C. D.2.已知定義在R上的偶函數(shù)滿足,當(dāng)時(shí),,函數(shù)(),則函數(shù)與函數(shù)的圖象的所有交點(diǎn)的橫坐標(biāo)之和為()A.2 B.4 C.5 D.63.將函數(shù)的圖象沿軸向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.已知集合A,則集合()A. B. C. D.5.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對(duì)稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.6.在平面直角坐標(biāo)系中,將點(diǎn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),設(shè)直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.7.已知函數(shù)的圖象如圖所示,則下列說(shuō)法錯(cuò)誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對(duì)稱中心是D.函數(shù)的對(duì)稱軸是8.五名志愿者到三個(gè)不同的單位去進(jìn)行幫扶,每個(gè)單位至少一人,則甲、乙兩人不在同一個(gè)單位的概率為()A. B. C. D.9.已知雙曲線的右焦點(diǎn)為,過(guò)的直線交雙曲線的漸近線于兩點(diǎn),且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.10.已知雙曲線的一條漸近線經(jīng)過(guò)圓的圓心,則雙曲線的離心率為()A. B. C. D.211.在復(fù)平面內(nèi),復(fù)數(shù)(,)對(duì)應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國(guó)數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.1612.已知定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則()A.1 B.-1 C.2 D.-2二、填空題:本題共4小題,每小題5分,共20分。13.(5分)有一道描述有關(guān)等差與等比數(shù)列的問(wèn)題:有四個(gè)和尚在做法事之前按身高從低到高站成一列,已知前三個(gè)和尚的身高依次成等差數(shù)列,后三個(gè)和尚的身高依次成等比數(shù)列,且前三個(gè)和尚的身高之和為cm,中間兩個(gè)和尚的身高之和為cm,則最高的和尚的身高是____________cm.14.若函數(shù)的圖像上存在點(diǎn),滿足約束條件,則實(shí)數(shù)的最大值為_(kāi)_________.15.若冪函數(shù)的圖象經(jīng)過(guò)點(diǎn),則其單調(diào)遞減區(qū)間為_(kāi)______.16.正四棱柱中,,.若是側(cè)面內(nèi)的動(dòng)點(diǎn),且,則與平面所成角的正切值的最大值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某省新課改后某校為預(yù)測(cè)2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計(jì)圖.(1)根據(jù)條形統(tǒng)計(jì)圖,估計(jì)本屆高三學(xué)生本科上線率.(2)已知該省甲市2020屆高考考生人數(shù)為4萬(wàn),假設(shè)以(1)中的本科上線率作為甲市每個(gè)考生本科上線的概率.(i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線的概率(結(jié)果精確到0.01);(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬(wàn),假設(shè)該市每個(gè)考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數(shù)據(jù):取,.18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(1)求的直角坐標(biāo)方程和的直角坐標(biāo);(2)設(shè)與交于,兩點(diǎn),線段的中點(diǎn)為,求.19.(12分)已知在中,角、、的對(duì)邊分別為,,,,.(1)若,求的值;(2)若,求的面積.20.(12分)在中,角,,的對(duì)邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點(diǎn),求的最小值.21.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對(duì)于任意,恒成立,求的取值范圍.22.(10分)已知橢圓:的離心率為,直線:與以原點(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓相切.為左頂點(diǎn),過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn),直線,分別交直線于,兩點(diǎn).(1)求橢圓的方程;(2)以線段為直徑的圓是否過(guò)定點(diǎn)?若是,寫(xiě)出所有定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
利用換元法設(shè),則等價(jià)為有且只有一個(gè)實(shí)數(shù)根,分三種情況進(jìn)行討論,結(jié)合函數(shù)的圖象,求出的取值范圍.【詳解】解:設(shè),則有且只有一個(gè)實(shí)數(shù)根.當(dāng)時(shí),當(dāng)時(shí),,由即,解得,結(jié)合圖象可知,此時(shí)當(dāng)時(shí),得,則是唯一解,滿足題意;當(dāng)時(shí),此時(shí)當(dāng)時(shí),,此時(shí)函數(shù)有無(wú)數(shù)個(gè)零點(diǎn),不符合題意;當(dāng)時(shí),當(dāng)時(shí),,此時(shí)最小值為,結(jié)合圖象可知,要使得關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,此時(shí).綜上所述:或.故選:A.【點(diǎn)睛】本題考查了函數(shù)方程根的個(gè)數(shù)的應(yīng)用.利用換元法,數(shù)形結(jié)合是解決本題的關(guān)鍵.2、B【解析】
由函數(shù)的性質(zhì)可得:的圖像關(guān)于直線對(duì)稱且關(guān)于軸對(duì)稱,函數(shù)()的圖像也關(guān)于對(duì)稱,由函數(shù)圖像的作法可知兩個(gè)圖像有四個(gè)交點(diǎn),且兩兩關(guān)于直線對(duì)稱,則與的圖像所有交點(diǎn)的橫坐標(biāo)之和為4得解.【詳解】由偶函數(shù)滿足,可得的圖像關(guān)于直線對(duì)稱且關(guān)于軸對(duì)稱,函數(shù)()的圖像也關(guān)于對(duì)稱,函數(shù)的圖像與函數(shù)()的圖像的位置關(guān)系如圖所示,可知兩個(gè)圖像有四個(gè)交點(diǎn),且兩兩關(guān)于直線對(duì)稱,則與的圖像所有交點(diǎn)的橫坐標(biāo)之和為4.故選:B【點(diǎn)睛】本題主要考查了函數(shù)的性質(zhì),考查了數(shù)形結(jié)合的思想,掌握函數(shù)的性質(zhì)是解題的關(guān)鍵,屬于中檔題.3、A【解析】
求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達(dá)式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數(shù)的圖象沿軸向左平移個(gè)單位長(zhǎng)度,得到的圖象對(duì)應(yīng)函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當(dāng)時(shí),.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查充分不必要條件的判斷,同時(shí)也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運(yùn)算求解能力與推理能力,屬于中等題.4、A【解析】
化簡(jiǎn)集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.5、D【解析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對(duì)稱軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對(duì)稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點(diǎn)睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對(duì)稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.6、A【解析】
設(shè)直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導(dǎo)公式即可得到答案.【詳解】如圖,設(shè)直線直線與軸正半軸所成的最小正角為因?yàn)辄c(diǎn)在角的終邊上,所以依題有,則,所以,故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義及誘導(dǎo)公式,屬于基礎(chǔ)題.7、B【解析】
根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對(duì)稱性逐項(xiàng)判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點(diǎn)代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時(shí),函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時(shí),函數(shù)在上單調(diào)遞增,故B錯(cuò)誤;令,得,故函數(shù)的對(duì)稱中心是,故C正確;令,得,故函數(shù)的對(duì)稱軸是,故D正確.故選:B.【點(diǎn)睛】本題考查由圖象求余弦型函數(shù)的解析式,同時(shí)也考查了余弦型函數(shù)的單調(diào)性與對(duì)稱性的判斷,考查推理能力與計(jì)算能力,屬于中等題.8、D【解析】
三個(gè)單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個(gè)單位的概率,利用互為對(duì)立事件的概率和為1即可解決.【詳解】由題意,三個(gè)單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個(gè)單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個(gè)單位,共有種,故甲、乙兩人在同一個(gè)單位的概率為,故甲、乙兩人不在同一個(gè)單位的概率為.故選:D.【點(diǎn)睛】本題考查古典概型的概率公式的計(jì)算,涉及到排列與組合的應(yīng)用,在正面情況較多時(shí),可以先求其對(duì)立事件,即甲、乙兩人在同一個(gè)單位的概率,本題有一定難度.9、B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標(biāo),利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),考查向量知識(shí),考查學(xué)生的計(jì)算能力,屬于中檔題.10、B【解析】
求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線,故選:B【點(diǎn)睛】利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.11、D【解析】
根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點(diǎn)睛】本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.12、B【解析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時(shí),f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時(shí),;∴由奇函數(shù)性質(zhì)可得;∴;∴時(shí),;∴.故選:B.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問(wèn)題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來(lái)求解,考查理解能力和計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意設(shè)前三個(gè)和尚的身高依次為,第四個(gè)(最高)和尚的身高為,則,解得,又,解得,又因?yàn)槌傻缺葦?shù)列,則公比,故.14、1【解析】由題知x>0,且滿足約束條件的圖象為由圖可知當(dāng)與交于點(diǎn)B(2,1),當(dāng)直線過(guò)B點(diǎn)時(shí),m取得最大值為1.點(diǎn)睛:線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問(wèn)題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一、準(zhǔn)確無(wú)誤地作出可行域;二、畫(huà)標(biāo)準(zhǔn)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三、一般情況下,目標(biāo)函數(shù)的最大或最小會(huì)在可行域的端點(diǎn)或邊界上取得.15、【解析】
利用待定系數(shù)法求出冪函數(shù)的解析式,再求出的單調(diào)遞減區(qū)間.【詳解】解:冪函數(shù)的圖象經(jīng)過(guò)點(diǎn),則,解得;所以,其中;所以的單調(diào)遞減區(qū)間為.故答案為:.【點(diǎn)睛】本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.16、2.【解析】
如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,,又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2【點(diǎn)睛】本題主要考查了立體幾何中的動(dòng)點(diǎn)問(wèn)題,考查了直線與平面所成角的計(jì)算.對(duì)于這類題,一般是建立空間直角坐標(biāo),在動(dòng)點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)60%;(2)(i)0.12(ii)【解析】
(1)利用上線人數(shù)除以總?cè)藬?shù)求解;(2)(i)利用二項(xiàng)分布求解;(ii)甲、乙兩市上線人數(shù)分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計(jì)本科上線率為.(2)(i)記“恰有8名學(xué)生達(dá)到本科線”為事件A,由圖可知,甲市每個(gè)考生本科上線的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線人數(shù)分別記為X,Y,依題意,可得,.因?yàn)?020屆高考本科上線人數(shù)乙市的均值不低于甲市,所以,即,解得,又,故p的取值范圍為.【點(diǎn)睛】本題考查二項(xiàng)分布的綜合應(yīng)用,考查計(jì)算求解能力,注意二項(xiàng)分布與超幾何分布是易混淆的知識(shí)點(diǎn).18、(1),(2)【解析】
(1)利用互化公式把曲線C化成直角坐標(biāo)方程,把點(diǎn)P的極坐標(biāo)化成直角坐標(biāo);(2)把直線l的參數(shù)方程的標(biāo)準(zhǔn)形式代入曲線C的直角坐標(biāo)方程,根據(jù)韋達(dá)定理以及參數(shù)t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標(biāo)方程為y2=1,設(shè)點(diǎn)P的直角坐標(biāo)為(x,y),因?yàn)镻的極坐標(biāo)為(,),所以x=ρcosθcos1,y=ρsinθsin1,所以點(diǎn)P的直角坐標(biāo)為(1,1).(2)將代入y2=1,并整理得41t2+110t+25=0,因?yàn)椤鳎?102﹣4×41×25=8000>0,故可設(shè)方程的兩根為t1,t2,則t1,t2為A,B對(duì)應(yīng)的參數(shù),且t1+t2,依題意,點(diǎn)M對(duì)應(yīng)的參數(shù)為,所以|PM|=||.【點(diǎn)睛】本題考查了簡(jiǎn)單曲線的極坐標(biāo)方程,屬中檔題.19、(1)7(2)14【解析】
(1)在中,,可得,結(jié)合正弦定理,即可求得答案;(2)根據(jù)余弦定理和三角形面積公式,即可求得答案.【詳解】(1)在中,,,,,,.(2),,,解得,.【點(diǎn)睛】本題主要考查了正弦定理和余弦定理解三角形,解題關(guān)鍵是掌握正弦定理邊化角,考查了分析能力和計(jì)算能力,屬于中檔題.20、(1);(2).【解析】
(1)利用余弦定理和二倍角的正弦公式,化簡(jiǎn)即可得出結(jié)果;(2)在中,由余弦定理得,在中結(jié)合正弦定理求出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.【詳解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 自愿替班協(xié)議書(shū)范本
- 看管水庫(kù)協(xié)議書(shū)范本
- 建設(shè)扶貧車間協(xié)議書(shū)
- 研發(fā)項(xiàng)目立項(xiàng)協(xié)議書(shū)
- 藥品寄存協(xié)議書(shū)模板
- 委托承辦會(huì)議協(xié)議書(shū)
- 重慶大足法院協(xié)議書(shū)
- 租房鋪面出租協(xié)議書(shū)
- 美國(guó)買房協(xié)議書(shū)樣本
- 紙質(zhì)股票轉(zhuǎn)讓協(xié)議書(shū)
- 公安機(jī)關(guān)業(yè)務(wù)技術(shù)用房和辦公用房規(guī)劃設(shè)計(jì)規(guī)范
- (完整版)食品安全管理制度文本(完整版)
- DB14∕T 2163-2020 信息化項(xiàng)目軟件運(yùn)維費(fèi)用測(cè)算指南
- 信號(hào)與系統(tǒng)講義教案第5章連續(xù)時(shí)間信號(hào)與系統(tǒng)的復(fù)頻域分析
- 素雅古典花鳥(niǎo)中國(guó)風(fēng)PPT模板
- 農(nóng)田水力學(xué)課程設(shè)計(jì)設(shè)計(jì)說(shuō)明書(shū)
- 大數(shù)據(jù)時(shí)代下的人力資源管理創(chuàng)新研究——以智聯(lián)招聘為例
- 國(guó)家開(kāi)放大學(xué)《課程與教學(xué)論》形考任務(wù)1-4參考答案
- 放棄治療同意書(shū)
- USP 1225檢驗(yàn)方法驗(yàn)證和USP1226檢驗(yàn)方法確認(rèn)(中英文稿)
- 膽道射頻消融技術(shù)PPT課件
評(píng)論
0/150
提交評(píng)論