2025版新教材高中數(shù)學(xué)第六章概率1隨機(jī)事件的條件概率1.2乘法公式與事件的獨(dú)立性1.3全概率公式課時(shí)作業(yè)北師大版選擇性必修第一冊(cè)_第1頁(yè)
2025版新教材高中數(shù)學(xué)第六章概率1隨機(jī)事件的條件概率1.2乘法公式與事件的獨(dú)立性1.3全概率公式課時(shí)作業(yè)北師大版選擇性必修第一冊(cè)_第2頁(yè)
2025版新教材高中數(shù)學(xué)第六章概率1隨機(jī)事件的條件概率1.2乘法公式與事件的獨(dú)立性1.3全概率公式課時(shí)作業(yè)北師大版選擇性必修第一冊(cè)_第3頁(yè)
2025版新教材高中數(shù)學(xué)第六章概率1隨機(jī)事件的條件概率1.2乘法公式與事件的獨(dú)立性1.3全概率公式課時(shí)作業(yè)北師大版選擇性必修第一冊(cè)_第4頁(yè)
2025版新教材高中數(shù)學(xué)第六章概率1隨機(jī)事件的條件概率1.2乘法公式與事件的獨(dú)立性1.3全概率公式課時(shí)作業(yè)北師大版選擇性必修第一冊(cè)_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1.2乘法公式與事務(wù)的獨(dú)立性1.3全概率公式必備學(xué)問(wèn)基礎(chǔ)練學(xué)問(wèn)點(diǎn)一事務(wù)的相互獨(dú)立性的推斷1.下列事務(wù)A,B是相互獨(dú)立事務(wù)的是()A.一枚硬幣擲兩次,事務(wù)A為“第一次為正面”,事務(wù)B為“其次次為反面”B.袋中有2白,2黑的小球,不放回地摸兩球,事務(wù)A為“第一次摸到白球”,事務(wù)B為“其次次摸到白球”C.?dāng)S一枚骰子,事務(wù)A為“出現(xiàn)點(diǎn)數(shù)為奇數(shù)”,事務(wù)B為“出現(xiàn)點(diǎn)數(shù)為偶數(shù)”D.事務(wù)A為“人能活到20歲”,事務(wù)B為“人能活到50歲”2.一個(gè)袋子中有4個(gè)小球,其中2個(gè)白球,2個(gè)紅球,探討下列A,B事務(wù)的相互獨(dú)立性與互斥性.(1)A:取一個(gè)球?yàn)榧t球,B:取出的紅球放回后,再?gòu)闹腥∫磺驗(yàn)榘浊颍?2)從袋中取2個(gè)球,A:取出的兩球?yàn)橐粋€(gè)白球一個(gè)紅球;B:取出的兩球中至少有一個(gè)白球.學(xué)問(wèn)點(diǎn)二事務(wù)相互獨(dú)立性的應(yīng)用3.甲、乙同時(shí)參與某次法語(yǔ)考試,甲、乙考試合格的概率分別為0.6,0.7,兩人考試是否合格相互獨(dú)立,則甲、乙兩人都不合格的概率為()A.0.42B.0.28C.0.18D.0.124.從甲袋內(nèi)摸出1個(gè)紅球的概率是eq\f(1,3),從乙袋內(nèi)摸出1個(gè)紅球的概率是eq\f(1,2),現(xiàn)從兩袋內(nèi)各摸出1個(gè)球,則eq\f(2,3)表示的是()A.2個(gè)球不都是紅球的概率B.2個(gè)球都是紅球的概率C.至少有1個(gè)紅球的概率D.2個(gè)球中恰好有1個(gè)紅球的概率5.如圖,用K,A1,A2三類不同的元件連接成一個(gè)系統(tǒng).當(dāng)K正常工作且A1,A2至少有一個(gè)正常工作時(shí),系統(tǒng)正常工作,已知K,A1,A2正常工作的概率依次是0.9,0.8,0.8,則系統(tǒng)正常工作的概率為________.學(xué)問(wèn)點(diǎn)三全概率公式6.甲騎自行車從A地到B地,途中要經(jīng)過(guò)3個(gè)十字路口.已知甲在每個(gè)十字路口遇到紅燈的概率都是eq\f(1,3),且在每個(gè)路口是否遇到紅燈相互獨(dú)立,那么甲在前兩個(gè)十字路口都沒(méi)有遇到紅燈,直到第3個(gè)路口才遇到紅燈的概率是()A.eq\f(1,3)B.eq\f(4,9)C.eq\f(4,27)D.eq\f(1,27)7.甲、乙兩人進(jìn)行“三局兩勝”制的乒乓球賽,已知每局甲取勝的概率為0.6,乙取勝的概率為0.4,那么最終甲勝乙的概率為()A.0.36B.0.216C.0.432D.0.6488.甲、乙兩人組成“星隊(duì)”參與猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ),已知甲每輪猜對(duì)的概率是eq\f(3,4),乙每輪猜對(duì)的概率是eq\f(2,3);每輪活動(dòng)中甲、乙猜對(duì)與否互不影響,各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參與兩輪活動(dòng),求“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率.關(guān)鍵實(shí)力綜合練一、選擇題1.分別拋擲2枚質(zhì)地勻稱的硬幣,設(shè)“第1枚為正面”為事務(wù)A,“第2枚為正面”為事務(wù)B,“2枚結(jié)果相同”為事務(wù)C,有下列三個(gè)命題:①事務(wù)A與事務(wù)B相互獨(dú)立;②事務(wù)B與事務(wù)C相互獨(dú)立;③事務(wù)C與事務(wù)A相互獨(dú)立.其中正確的個(gè)數(shù)是()A.0B.1C.2D.32.甲、乙、丙三人參與一次考試,他們合格的概率分別為eq\f(2,3),eq\f(3,4),eq\f(2,5),那么三人中恰有兩人合格的概率是()A.eq\f(2,5)B.eq\f(7,15)C.eq\f(11,30)D.eq\f(1,6)3.某射手射擊一次命中的概率為0.8,連續(xù)兩次射擊均命中的概率為0.6,已知該射手第一次命中,則他其次次也命中的概率是()A.eq\f(3,4)B.eq\f(4,5)C.eq\f(3,5)D.eq\f(7,10)4.一個(gè)盒中裝有大小相同的2個(gè)黑球,2個(gè)白球,從中任取一球,若是白球則取出來(lái),若是黑球則放回盒中,直到把白球全部取出,則在此過(guò)程中恰有兩次取到黑球的概率為()A.eq\f(37,216)B.eq\f(37,72)C.eq\f(2,9)D.eq\f(2,27)5.體育課上定點(diǎn)投籃項(xiàng)目測(cè)試規(guī)則:每位同學(xué)有3次投籃機(jī)會(huì),一旦投中,則停止投籃,視為合格,否則始終投直到機(jī)會(huì)用完為止.每次投中與否相互獨(dú)立,某同學(xué)一次投籃投中的概率為p,若該同學(xué)本次測(cè)試合格的概率為0.784,則p=()A.0.4B.0.6C.0.1D.0.26.[探究題]在荷花池中,有一只青蛙在成品字形的三片荷葉上跳來(lái)跳去(每次跳動(dòng)時(shí),均從一片荷葉跳到另一片荷葉上),如圖所示,而且按逆時(shí)針?lè)较蛱母怕适前错槙r(shí)針?lè)较蛱母怕实膬杀叮僭O(shè)現(xiàn)在青蛙在A葉上,則跳三次之后停在A葉上的概率是()A.eq\f(1,3)B.eq\f(2,9)C.eq\f(4,9)D.eq\f(8,27)二、填空題7.某家公司用三臺(tái)機(jī)器A1,A2,A3生產(chǎn)同一種產(chǎn)品,生產(chǎn)量分別占總產(chǎn)量的eq\f(1,2),eq\f(1,3),eq\f(1,6),且其產(chǎn)品的不良率分別占其產(chǎn)量的2.0%,1.2%,1.0%,任取此公司的一件產(chǎn)品為不良品的概率是________,若已知此產(chǎn)品為不良品,則其由A1生產(chǎn)的概率是________.8.在一次象棋對(duì)抗賽中,甲勝乙的概率為0.4,乙勝丙的概率為0.5,丙勝甲的概率為0.6,競(jìng)賽依次如下:第一局,甲對(duì)乙;其次局,第一局勝者對(duì)丙;第三局,其次局勝者對(duì)第一局?jǐn)≌?;第四局,第三局勝者?duì)其次局?jǐn)≌撸瑒t乙連勝四局的概率為________.9.[易錯(cuò)題]甲、乙兩人進(jìn)行跳繩競(jìng)賽,規(guī)定:若甲贏一局,則競(jìng)賽結(jié)束,甲勝出:若乙贏兩局,則競(jìng)賽結(jié)束,乙勝出.已知每一局甲,乙兩人獲勝的概率分別為eq\f(2,5),eq\f(3,5),則甲勝出的概率為________.三、解答題10.事務(wù)A,B,C相互獨(dú)立,假如P(AB)=eq\f(1,6),P(eq\x\to(B)C)=eq\f(1,8),P(ABeq\x\to(C))=eq\f(1,8),求P(B)和P(eq\x\to(A)B).學(xué)科素養(yǎng)升級(jí)練1.[多選題]設(shè)同時(shí)拋擲兩個(gè)質(zhì)地勻稱的四面分別標(biāo)有1,2,3,4的正四面體一次,記事務(wù)A={第一個(gè)四面體向下的一面為偶數(shù)},事務(wù)B={其次個(gè)四面體向下的一面為奇數(shù)},C={兩個(gè)四面體向下的一面同時(shí)為奇數(shù)或者同時(shí)為偶數(shù)},則下列說(shuō)法正確的是()A.P(A)=P(B)=P(C)B.P(AB)=P(AC)=P(BC)C.P(ABC)=eq\f(1,8)D.P(A)P(B)P(C)=eq\f(1,8)2.甲袋中有5個(gè)白球,7個(gè)紅球;乙袋中有4個(gè)白球,2個(gè)紅球,從兩個(gè)袋子中任取一袋,然后從所取到的袋子中任取一球,則取到白球的概率是________.3.[學(xué)科素養(yǎng)——邏輯推理]在一場(chǎng)消遣晚會(huì)上,有5位民間歌手(1至5號(hào))登臺(tái)演唱,由現(xiàn)場(chǎng)數(shù)百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨(dú)立地在選票上選3名歌手,其中觀眾甲是1號(hào)歌手的歌迷,他必選1號(hào),不選2號(hào),另在3至5號(hào)中隨機(jī)選2名.觀眾乙和丙對(duì)5位歌手的演唱沒(méi)有偏愛,因此在1至5號(hào)中隨機(jī)選3名歌手.(1)求觀眾甲選中3號(hào)歌手且觀眾乙未選中3號(hào)歌手的概率;(2)求3號(hào)歌手得到觀眾甲、乙、丙中兩票的概率.1.2乘法公式與事務(wù)的獨(dú)立性1.3全概率公式必備學(xué)問(wèn)基礎(chǔ)練1.解析:把一枚硬幣擲兩次,對(duì)于每次而言是相互獨(dú)立的,其結(jié)果不受先后影響,故選項(xiàng)A中的兩個(gè)事務(wù)是相互獨(dú)立事務(wù);選項(xiàng)B中是不放回地摸球,明顯事務(wù)A與事務(wù)B不相互獨(dú)立;對(duì)于選項(xiàng)C,其結(jié)果具有唯一性,A,B為對(duì)立事務(wù);選項(xiàng)D是條件概率,事務(wù)B受事務(wù)A的影響.答案:A2.解析:(1)∵取出的紅球放回,故事務(wù)A與B的發(fā)生互不影響,∴A與B相互獨(dú)立.(2)設(shè)2個(gè)白球?yàn)閍,b,兩個(gè)紅球?yàn)?,2,則從袋中取2個(gè)球的全部取法為{a,b},{a,1},{a,2},{b,1},{b,2},{1,2},則P(A)=eq\f(4,6)=eq\f(2,3),P(B)=eq\f(5,6),P(AB)=eq\f(2,3),∴P(AB)≠P(A)·P(B).∴事務(wù)A,B不是相互獨(dú)立事務(wù),又∵事務(wù)A,B能同時(shí)發(fā)生,∴A,B不是互斥事務(wù).3.解析:由于甲、乙考試合格的概率分別為0.6,0.7,則甲、乙考試不合格的概率分別為0.4,0.3,由于兩人考試是否合格相互獨(dú)立,所以甲、乙兩人都不合格的概率為0.4×0.3=0.12.答案:D4.解析:至少有1個(gè)紅球的概率是eq\f(1,3)×(1-eq\f(1,2))+eq\f(1,2)×(1-eq\f(1,3))+eq\f(1,2)×eq\f(1,3)=eq\f(2,3).答案:C5.解析:依據(jù)題意,記K,A1,A2正常工作分別為事務(wù)A,B,C,則P(A)=0.9,P(B)=P(C)=0.8.A1,A2至少有一個(gè)正常工作的概率為1-P(eq\x\to(B))P(eq\x\to(C))=1-0.2×0.2=0.96.則系統(tǒng)正常工作的概率為0.9×0.96=0.864.答案:0.8646.解析:由題意知甲在前兩個(gè)十字路口都沒(méi)有遇到紅燈,直到第3個(gè)路口才遇到紅燈的概率P=(1-eq\f(1,3))×(1-eq\f(1,3))×eq\f(1,3)=eq\f(4,27).故選C.答案:C7.解析:甲勝乙包含甲勝前兩局或甲勝第一、三局或甲勝其次、三局三種狀況,所以甲獲勝的概率P=0.6×0.6+0.6×0.4×0.6+0.4×0.6×0.6=0.648,故選D.答案:D8.解析:記事務(wù)A:“甲第一輪猜對(duì)”,事務(wù)B:“乙第一輪猜對(duì)”,事務(wù)C:“甲其次輪猜對(duì)”,事務(wù)D:“乙其次輪猜對(duì)”,事務(wù)E:“‘星隊(duì)’至少猜對(duì)3個(gè)成語(yǔ)”.由題意知,E=(ABCD)∪(eq\x\to(A)BCD)∪(Aeq\x\to(B)CD)∪(ABeq\x\to(C)D)∪(ABCeq\x\to(D)).由事務(wù)的獨(dú)立性與互斥性,得P(E)=P(ABCD)+P(eq\x\to(A)BCD)+P(Aeq\x\to(B)CD)+P(ABeq\x\to(C)D)+P(ABCeq\x\to(D))=P(A)P(B)P(C)P(D)+P(eq\x\to(A))P(B)P(C)P(D)+P(A)P(eq\x\to(B))P(C)P(D)+P(A)P(B)P(eq\x\to(C))P(D)+P(A)P(B)P(C)P(eq\x\to(D))=eq\f(3,4)×eq\f(2,3)×eq\f(3,4)×eq\f(2,3)+2×(eq\f(1,4)×eq\f(2,3)×eq\f(3,4)×eq\f(2,3)+eq\f(3,4)×eq\f(1,3)×eq\f(3,4)×eq\f(2,3))=eq\f(2,3).所以“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率為eq\f(2,3).關(guān)鍵實(shí)力綜合練1.解析:P(A)=eq\f(1,2),P(B)=eq\f(1,2),P(C)=eq\f(1,2),P(AB)=P(AC)=P(BC)=eq\f(1,4),因?yàn)镻(AB)=eq\f(1,4)=P(A)P(B),所以A,B相互獨(dú)立;因?yàn)镻(AC)=eq\f(1,4)=P(A)P(C),所以A,C相互獨(dú)立;因?yàn)镻(BC)=eq\f(1,4)=P(B)P(C),所以B,C相互獨(dú)立.故選D.答案:D2.解析:三人中恰有兩人合格包括三種狀況,這三種狀況是互斥的,∴三人中恰有兩人合格的概率P=eq\f(1,3)×eq\f(3,4)×eq\f(2,5)+eq\f(2,3)×eq\f(1,4)×eq\f(2,5)+eq\f(2,3)×eq\f(3,4)×eq\f(3,5)=eq\f(7,15),故選B.答案:B3.解析:設(shè)該射手第一次命中,其次次也命中的概率為P,∵該射手射擊一次命中的概率為0.8,連續(xù)兩次均命中的概率是0.6,∴0.8P=0.6,解得P=eq\f(3,4).故選A.答案:A4.解析:要滿意題意,共有三種取法:(白黑黑白),(黑白黑白)(黑黑白白),其中(白黑黑白)的概率為eq\f(2,4)×eq\f(2,3)×eq\f(2,3)×eq\f(1,3)=eq\f(2,27),(黑黑白白)的概率為eq\f(2,4)×eq\f(2,4)×eq\f(2,4)×eq\f(1,3)=eq\f(1,24),(黑白黑白)的概率為eq\f(2,4)×eq\f(2,4)×eq\f(2,3)×eq\f(1,3)=eq\f(1,18),綜上,所求概率P=eq\f(2,27)+eq\f(1,24)+eq\f(1,18)=eq\f(37,216),故選A.答案:A5.解析:由題意可得p+p(1-p)+p(1-p)2=0.784,即p(2-p+1-2p+p2)=p(p2-3p+3)=0.784,解得p=0.4,故選A.答案:A6.解析:若按順時(shí)針?lè)较蛱母怕蕿镻,則按逆時(shí)針?lè)较蛱母怕蕿?P,可得P+2P=3P=1,解得P=eq\f(1,3),即按順時(shí)針?lè)较蛱母怕蕿閑q\f(1,3),按逆時(shí)針?lè)较蛱母怕蕿閑q\f(2,3),若青蛙在A葉上,跳3次之后停在A葉上,則需滿意3次逆時(shí)針或者3次順時(shí)針.①若按逆時(shí)針?lè)较颍瑒t對(duì)應(yīng)的概率為eq\f(2,3)×eq\f(2,3)×eq\f(2,3)=eq\f(8,27);②若按順時(shí)針?lè)较?,則對(duì)應(yīng)的概率為eq\f(1,3)×eq\f(1,3)×eq\f(1,3)=eq\f(1,27),則所求概率為eq\f(8,27)+eq\f(1,27)=eq\f(1,3),故選A.答案:A7.解析:由題意知,事務(wù)“任取此公司的一件產(chǎn)品為不良品”的概率P1=eq\f(1,2)×2.0%+eq\f(1,3)×1.2%+eq\f(1,6)×1.0%=eq\f(47,3000),事務(wù)“已知此產(chǎn)品為不良品,則其由A1生產(chǎn)”的概率P2=eq\f(\f(1,2)×2.0%,\f(47,3000))=eq\f(30,47).答案:eq\f(47,3000)eq\f(30,47)8.解析:乙連勝四局,即乙先勝甲,然后勝丙,接著再勝甲,最終再勝丙,所以所求概率P=(1-0.4)×0.5×(1-0.4)×0.5=0.09.答案:0.099.解析:甲勝出的狀況有2種,一種是甲第一局獲勝,另外一種是甲第一局輸了,其次局獲勝.設(shè)事務(wù)Ai為“甲在第i局獲勝”(i=1,2),事務(wù)B為“甲勝出”,則P(B)=P(A1)+P(A1A2).依題意可得P(A1)=P(A2)=eq\f(2,5),因?yàn)閮蓤?chǎng)競(jìng)賽相互獨(dú)立,所以P(A1A2)=P(A1)×P(A2)=eq\f(3,5)×eq\f(2,5)=eq\f(6,25),從而P(B)=eq\f(2,5)+eq\f(6,25)=eq\f(16,25).答案:eq\f(16,25)10.解析:由題意得,eq\b\lc\{(\a\vs4\al\co1(P(A)P(B)=\f(1,6),,P(\x\to(B))P(C)=\f(1,8),,P(A)P(B)P(\x\to(C))=\f(1,8),))又eq\b\lc\{(\a\vs4\al\co1(P(\x\to(B))+P(B)=1,,P(\x\to(C))+P(C)=1,))解得eq\b\lc\{(\a\vs4\al\co1(P(A)=\f(1,3),,P(B)=\f(1,2),,P(C)=\f(1,4),))所以P(eq\x\to(A)B)=P(eq\x\to(A))P(B)=eq\f(2,3)×eq\f(1,2)=eq\f(1,3).學(xué)科素養(yǎng)升級(jí)練1.解析:依題意P(A)=eq\f(1,2),P(B)=eq\f(1,2),P(C)=eq\f(1,2),故AD正確;P(AB)=P(A)P(B)=eq\f(1,2)×eq\f(1,2)=eq\f(1,4),P(AC)=eq\f(1,4),P(BC)=eq\f(1,4),故B正確;事務(wù)A,B,C不行能同時(shí)發(fā)生,所以P(ABC)=0,故C錯(cuò)誤.故選ABD.答案:ABD2.解析:設(shè)事務(wù)A為“取出甲袋”,事務(wù)B為“取出白球”,分兩種狀況進(jìn)行探討.若取出的是甲袋,則P1=P(A)·P(B|A),依題意可得P(A)=eq\f(1,2),P(B|A)=eq\f(5,12),所以P1=eq\f(1,2)×eq\f(5,12)=eq\f(5,24);若取出的是乙袋,則P2=P(eq\x\to(A))·P(B|eq\x\to(A)),依題意可得P(eq\x\to(A))=eq\f(1,2),P(B|eq\x\to(A))=eq\f(4,6)=eq\f(2,3),所以P2=eq\f(1,2)×eq\f(2,3)=eq\f(1,3).綜上所述,取到白球的概率P=P1+P2=eq\f(13,24).答案:eq\f(13,24)3.解析:(1)設(shè)A表示事務(wù)“觀眾甲選中3號(hào)歌手”,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論