遼寧省阜新市海州高級中學(xué)2025屆高三第三次測評數(shù)學(xué)試卷含解析_第1頁
遼寧省阜新市海州高級中學(xué)2025屆高三第三次測評數(shù)學(xué)試卷含解析_第2頁
遼寧省阜新市海州高級中學(xué)2025屆高三第三次測評數(shù)學(xué)試卷含解析_第3頁
遼寧省阜新市海州高級中學(xué)2025屆高三第三次測評數(shù)學(xué)試卷含解析_第4頁
遼寧省阜新市海州高級中學(xué)2025屆高三第三次測評數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

遼寧省阜新市海州高級中學(xué)2025屆高三第三次測評數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直角坐標系中,雙曲線()與拋物線相交于、兩點,若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.2.已知向量,,且,則()A. B. C.1 D.23.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個4.已知實數(shù)、滿足不等式組,則的最大值為()A. B. C. D.5.設(shè)等差數(shù)列的前項和為,若,則()A.23 B.25 C.28 D.296.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.407.若復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在第二象限,則實數(shù)的取值范圍是()A. B. C. D.8.若數(shù)列滿足且,則使的的值為()A. B. C. D.9.點在所在的平面內(nèi),,,,,且,則()A. B. C. D.10.函數(shù)的圖象為C,以下結(jié)論中正確的是()①圖象C關(guān)于直線對稱;②圖象C關(guān)于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③11.設(shè)數(shù)列是等差數(shù)列,,.則這個數(shù)列的前7項和等于()A.12 B.21 C.24 D.3612.已知集合則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知,,為的中點,為以為直徑的圓上一動點,則的最小值是_____.14.已知數(shù)列滿足:,,若對任意的正整數(shù)均有,則實數(shù)的最大值是_____.15.下圖是一個算法的流程圖,則輸出的x的值為_______.16.已知函數(shù),若關(guān)于x的方程有且只有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,求的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點,,且,為的導(dǎo)函數(shù),設(shè),求的取值范圍,并求取到最小值時所對應(yīng)的的值.18.(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線與直線的直角坐標方程;(2)若曲線與直線交于兩點,求的值.19.(12分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學(xué)校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類題的概率;(2)若甲同學(xué)答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學(xué)恰好抽中2道A類題和1道B類題,用X表示甲同學(xué)答對題目的個數(shù),求隨機變量X的分布列和數(shù)學(xué)期望.20.(12分)已知數(shù)列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數(shù)列的通項公式;(2)已知數(shù)列滿足,,設(shè)數(shù)列的前項和為,求大于的最小的正整數(shù)的值.21.(12分)在直角坐標系中,是過定點且傾斜角為的直線;在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.22.(10分)如圖,在矩形中,,,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)題干得到點A坐標為,代入拋物線得到坐標為,再將點代入雙曲線得到離心率.【詳解】因為三角形OAB是等邊三角形,設(shè)直線OA為,設(shè)點A坐標為,代入拋物線得到x=2b,故點A的坐標為,代入雙曲線得到故答案為:D.【點睛】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).2、A【解析】

根據(jù)向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點睛】本小題主要考查向量垂直的坐標表示,屬于基礎(chǔ)題.3、B【解析】

由題意,結(jié)合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運算,得到集合,再由真子集個數(shù)的公式作出計算是解答的關(guān)鍵,著重考查了推理與運算能力.4、A【解析】

畫出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標函數(shù),化為直線,當(dāng)直線過點A時,此時直線在y軸上的截距最大,目標函數(shù)取得最大值,又由,解得,所以目標函數(shù)的最大值為,故選A.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎(chǔ)題.5、D【解析】

由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D【點睛】考查等差數(shù)列的有關(guān)性質(zhì)、運算求解能力和推理論證能力,是基礎(chǔ)題.6、A【解析】

化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學(xué)生的計算能力.7、B【解析】

復(fù)數(shù),在復(fù)平面內(nèi)對應(yīng)的點在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復(fù)平面對應(yīng)的點在第二象限,得,則.故選:B.【點睛】本題考查了復(fù)數(shù)的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.8、C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.9、D【解析】

確定點為外心,代入化簡得到,,再根據(jù)計算得到答案.【詳解】由可知,點為外心,則,,又,所以①因為,②聯(lián)立方程①②可得,,,因為,所以,即.故選:【點睛】本題考查了向量模長的計算,意在考查學(xué)生的計算能力.10、B【解析】

根據(jù)三角函數(shù)的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結(jié)論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數(shù)的對稱軸、對稱中心,考查三角函數(shù)圖象變換,屬于基礎(chǔ)題.11、B【解析】

根據(jù)等差數(shù)列的性質(zhì)可得,由等差數(shù)列求和公式可得結(jié)果.【詳解】因為數(shù)列是等差數(shù)列,,所以,即,又,所以,,故故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,性質(zhì),等差數(shù)列的和,屬于中檔題.12、B【解析】

解對數(shù)不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.【點睛】本題考查了集合交集的簡單運算,對數(shù)不等式解法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

建立合適的直角坐標系,求出相關(guān)點的坐標,進而可得的坐標表示,利用平面向量數(shù)量積的坐標表示求出的表達式,求出其最小值即可.【詳解】建立直角坐標系如圖所示:則點,,,設(shè)點,所以,由平面向量數(shù)量積的坐標表示可得,,其中,因為,所以的最小值為.故答案為:【點睛】本題考查平面向量數(shù)量積的坐標表示和利用輔助角公式求最值;考查數(shù)形結(jié)合思想和轉(zhuǎn)化與化歸能力、運算求解能力;建立直角坐標系,把表示為關(guān)于角的三角函數(shù),利用輔助角公式求最值是求解本題的關(guān)鍵;屬于中檔題.14、2【解析】

根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達式的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當(dāng)時,,不滿足對任意的正整數(shù)均有.所以.當(dāng)時,證明:對任意的正整數(shù)都有.當(dāng)時,成立.假設(shè)當(dāng)時結(jié)論成立,即,則,即結(jié)論對也成立.由數(shù)學(xué)歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實數(shù)的最大值是2.故答案為:2【點睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時注意結(jié)合參數(shù)的范圍問題進行分析.屬于難題.15、1【解析】

利用流程圖,逐次進行運算,直到退出循環(huán),得到輸出值.【詳解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此時14>10×1+3,輸出x,故輸出x的值為1.故答案為:.【點睛】本題主要考查程序框圖的識別,“還原現(xiàn)場”是求解這類問題的良方,側(cè)重考查邏輯推理的核心素養(yǎng).16、【解析】

畫出函數(shù)的圖象,再畫的圖象,求出一個交點時的的值,然后平行移動可得有兩個交點時的的范圍.【詳解】函數(shù)的圖象如圖所示:因為方程有且只有兩個不相等的實數(shù)根,所以圖象與直線有且只有兩個交點即可,當(dāng)過點時兩個函數(shù)有一個交點,即時,與函數(shù)有一個交點,由圖象可知,直線向下平移后有兩個交點,可得,故答案為:.【點睛】本題主要考查了方程的跟與函數(shù)的圖象交點的轉(zhuǎn)化,數(shù)形結(jié)合的思想,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)的取值范圍是;對應(yīng)的的值為.【解析】

(1)當(dāng)時,求的導(dǎo)數(shù)可得函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點,,且,利用導(dǎo)函數(shù),可得的范圍,再表達,構(gòu)造新函數(shù)可求的取值范圍,從而可求取到最小值時所對應(yīng)的的值.【詳解】(1)函數(shù)由條件得函數(shù)的定義域:,當(dāng)時,,所以:,時,,當(dāng)時,,當(dāng),時,,則函數(shù)的單調(diào)增區(qū)間為:,單調(diào)遞減區(qū)間為:,;(2)由條件得:,,由條件得有兩根:,,滿足,△,可得:或;由,可得:.,函數(shù)的對稱軸為,,所以:,;,可得:,,,則:,所以:;所以:,令,,,則,因為:時,,所以:在,上是單調(diào)遞減,在,上單調(diào)遞增,因為:,(1),,(1),所以,;即的取值范圍是:,;,所以有,則,;所以當(dāng)取到最小值時所對應(yīng)的的值為;【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值和單調(diào)區(qū)間問題,考查利用導(dǎo)數(shù)求函數(shù)的最值,體現(xiàn)了轉(zhuǎn)化的思想方法,屬于難題.18、(1)曲線的直角坐標方程為;直線的直角坐標方程為(2)【解析】

(1)由公式可化極坐標方程為直角坐標方程,消參法可化參數(shù)方程為普通方程;(2)聯(lián)立兩曲線方程,解方程組得兩交點坐標,從而得兩點間距離.【詳解】解:(1)曲線的直角坐標方程為直線的直角坐標方程為(2)據(jù)解,得或【點睛】本題考查極坐標與直角坐標的互化,考查參數(shù)方程與普通方程的互化,屬于基礎(chǔ)題.19、(1);(2)分布列見解析,期望為.【解析】

(1)甲同學(xué)至少抽到2道B類題包含兩個事件:一個抽到2道B類題,一個是抽到3個B類題,計算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計算概率得分布列,再由期望公式計算期望.【詳解】(1)令“甲同學(xué)至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123【點睛】本題考查古典概型,考查隨機變量的概率分布列和數(shù)學(xué)期望.解題關(guān)鍵是掌握相互獨立事件同時發(fā)生的概率計算公式.20、(1)(2)4【解析】

(1)利用判斷是等差數(shù)列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,,又是與的等比中項,,設(shè)數(shù)列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數(shù)的值為.【點睛】本題考查等差數(shù)列的通項公式和前項和公式及錯位相減法求和.(1)解決等差數(shù)列通項的思路(1)在等差數(shù)列中,是最基本的兩個量,一般可設(shè)出和,利用等差數(shù)列的通項公式和前項和公式列方程(組)求解即可.(2)錯位相減法求和的方法:如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解;在寫“”與“”的表達式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式21、(1)(為參數(shù)),;(2)【解析】分析:(1)直線的參數(shù)方程為(為參數(shù)),其中表示之間的距離,而極坐標方程可化為,從而的直角方程為.(2)設(shè),則,利用在圓上得到滿足的方程,最后利用韋達定理就可求出兩條線段的和.詳解:(1)直線的參數(shù)方程為(為參數(shù)).曲線的極坐標方程可化為.把,代入曲線的極坐標方程可得,即.(2)把直線的參數(shù)方程為(為參數(shù))代入圓的方程可得:.∵曲線與直線相交于不同的兩點,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范圍是.點睛:(1)直線的參數(shù)方程有多種形式,其中一種為(為直線的傾斜角,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論