![《信息科學(xué)類專業(yè)英語(yǔ)》課件第21章_第1頁(yè)](http://file4.renrendoc.com/view9/M01/0A/11/wKhkGWdb382AQRA5AAO-DlfFRAE576.jpg)
![《信息科學(xué)類專業(yè)英語(yǔ)》課件第21章_第2頁(yè)](http://file4.renrendoc.com/view9/M01/0A/11/wKhkGWdb382AQRA5AAO-DlfFRAE5762.jpg)
![《信息科學(xué)類專業(yè)英語(yǔ)》課件第21章_第3頁(yè)](http://file4.renrendoc.com/view9/M01/0A/11/wKhkGWdb382AQRA5AAO-DlfFRAE5763.jpg)
![《信息科學(xué)類專業(yè)英語(yǔ)》課件第21章_第4頁(yè)](http://file4.renrendoc.com/view9/M01/0A/11/wKhkGWdb382AQRA5AAO-DlfFRAE5764.jpg)
![《信息科學(xué)類專業(yè)英語(yǔ)》課件第21章_第5頁(yè)](http://file4.renrendoc.com/view9/M01/0A/11/wKhkGWdb382AQRA5AAO-DlfFRAE5765.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Lesson21IntroductiontoArtificialIntelligence
(第二十一課現(xiàn)代人工智能簡(jiǎn)介)
Vocabulary(詞匯)ImportantSentences(重點(diǎn)句)Multiple-choiceQuestions(多選題)Problems(問(wèn)題)
HumankindhasgivenitselfthescientificnameHomosapiens—manthewise—becauseourmentalcapacitiesaresoimportanttooureverydaylivesandoursenseofself.Thefieldofartificialintelligence,orAI,attemptstounderstandintelligententities.Thus,onereasontostudyitistolearnmoreaboutourselves.Butunlikephilosophyandpsychology,whicharealsoconcernedwithintelligence,AIstrivestobuildintelligententitiesaswellasunderstandthem.AnotherreasontostudyAIisthattheseconstructedintelligententitiesareinterestingandusefulintheirownright.AIhasproducedmanysignificantandimpressiveproductsevenatthisearlystageinitsdevelopment.Althoughnoonecanpredictthefutureindetail,itisclearthatcomputerswithhuman-levelintelligence(orbetter)wouldhaveahugeimpactonoureverydaylivesandonthefuturecourseofcivilization.[1]
AIaddressesoneoftheultimatepuzzles.Howisitpossibleforaslow,tinybrain,whetherbiologicalorelectronic,toperceive,understand,predict,andmanipulateaworldfarlargerandmorecomplicatedthanitself?Howdowegoaboutmakingsomethingwiththoseproperties?Thesearehardquestions,butunlikethesearchforfaster-than-lighttraveloranantigravitydevice,theresearcherinAIhassolidevidencethatthequestispossible.Alltheresearcherhastodoislookinthemirrortoseeanexampleofanintelligentsystem.
AIisoneofthenewestdisciplines.Itwasformallyinitiatedin1956,whenthenamewascoined,althoughatthatpointworkhadbeenunderwayforaboutfiveyears.Alongwithmoderngenetics,itisregularlycitedasthe“fieldIwouldmostliketobein”byscientistsinotherdisciplines.AstudentinphysicsmightreasonablyfeelthatallthegoodideashavealreadybeentakenbyGalileo,Newton,Einstein,andtherest,andthatittakesmanyyearsofstudybeforeonecancontributenewideas.AI,ontheotherhand,stillhasopeningsforafull-timeEinstein.
AIcurrentlyencompassesahugevarietyofsubfields,fromgeneral-purposeareassuchasperceptionandlogicalreasoning,tospecifictaskssuchasplayingchess,provingmathematicaltheorems,writingpoetry,anddiagnosingdiseases.Often,scientistsinotherfieldsmovegraduallyintoartificialintelligence,wheretheyfindthetoolsandvocabularytosystematizeandautomatetheintellectualtasksonwhichtheyhavebeenworkingalltheirlives.[2]Similarly,workersinAIcanchoosetoapplytheirmethodstoanyareaofhumanintellectualendeavor.Inthissense,itistrulyauniversalfield.1WhatisAI?
WehavenowexplainedwhyAIisexciting,butwehavenotsaidwhatitis.Definitionsofartificialintelligenceaccordingtoeightrecenttextbooksareshowninthetablebelow.Thesedefinitionsvaryalongtwomaindimensions.Theonesontopareconcernedwiththoughtprocessesandreasoning,whereastheonesonthebottomaddressbehavior.Also,thedefinitionsontheleftmeasuresuccessintermsofhumanperformance,whereastheonesontherightmeasureagainstanidealconceptofintelligence,whichwewillcallrationality.Asystemisrationalifitdoestherightthing.Table.1AIDefinitionVaryalongtwomaindimensions
Thisgivesusfourpossiblegoalstopursueinartificialintelligence:
Historically,allfourapproacheshavebeenfollowed.Asonemightexpect,atensionexistsbetweenapproachescenteredaroundhumansandapproachescenteredaroundrationality.Ahuman-centeredapproachmustbeanempiricalscience,involvinghypothesisandexperimentalconfirmation.Arationalistapproachinvolvesacombinationofmathematicsandengineering.Peopleineachgroupsometimescastaspersionsonworkdoneintheothergroups,butthetruthisthateachdirectionhasyieldedvaluableinsights.Letuslookateachinmoredetail.2ActingHumanly:theTuringTestApproach
TheTuringTest,proposedbyAlanTuring(Turing,1950),wasdesignedtoprovideasatisfactoryoperationaldefinitionofintelligence.Turingdefinedintelligentbehaviorastheabilitytoachievehuman-levelperformanceinallcognitivetasks,sufficienttofoolaninterrogator.Roughlyspeaking,thetestheproposedisthatthecomputershouldbeinterrogatedbyahumanviaateletype,andpassesthetestiftheinterrogatorcannottellifthereisacomputerorahumanattheotherend.Programmingacomputertopassthetestprovidesplentytoworkon.Thecomputerwouldneedtopossessthefollowingcapabilities:
naturallanguageprocessingtoenableittocommunicatesuccessfullyinEnglish(orsomeotherhumanlanguage);
knowledgerepresentationtostoreinformationprovidedbeforeorduringtheinterrogation;
automatedreasoningtousethestoredinformationtoanswerquestionsandtodrawnewconclusions;
machinelearningtoadapttonewcircumstancesandtodetectandextrapolatepatterns.
Turing’stestdeliberatelyavoideddirectphysicalinteractionbetweentheinterrogatorandthecomputer,becausephysicalsimulationofapersonisunnecessaryforintelligence.[3]However,theso-calledtotalTuringTestincludesavideosignalsothattheinterrogatorcantestthesubject’sperceptualabilities,aswellastheopportunityfortheinterrogatortopassphysicalobjects“throughthehatch.”TopassthetotalTuringTest,thecomputerwillneed
computervisiontoperceiveobjects,and
roboticstomovethemabout.
WithinAI,therehasnotbeenabigefforttotrytopasstheTuringtest.TheissueofactinglikeahumancomesupprimarilywhenAIprogramshavetointeractwithpeople,aswhenanexpertsystemexplainshowitcametoitsdiagnosis,oranaturallanguageprocessingsystemhasadialoguewithauser.Theseprogramsmustbehaveaccordingtocertainnormalconventionsofhumaninteractioninordertomakethemselvesunderstood.Theunderlyingrepresentationandreasoninginsuchasystemmayormaynotbebasedonahumanmodel.3ThinkingHumanly:theCognitiveModellingApproach
Ifwearegoingtosaythatagivenprogramthinkslikeahuman,wemusthavesomewayofdetermininghowhumansthink.Weneedtogetinsidetheactualworkingsofhumanminds.Therearetwowaystodothis:throughintrospection—tryingtocatchourownthoughtsastheygoby—orthroughpsychologicalexperiments.Oncewehaveasufficientlyprecisetheoryofthemind,itbecomespossibletoexpressthetheoryasacomputerprogram.Iftheprogram’sinput/outputandtimingbehaviormatcheshumanbehavior,thatisevidencethatsomeoftheprogram’smechanismsmayalsobeoperatinginhumans.Forexample,NewellandSimon,whodevelopedGPS,the“GeneralProblemSolver”(NewellandSimon,1961),werenotcontenttohavetheirprogramcorrectlysolveproblems.Theyweremoreconcernedwithcomparingthetraceofitsreasoningstepstotracesofhumansubjectssolvingthesameproblems.Thisisincontrasttootherresearchersofthesametime(suchasWang(1960)),whowereconcernedwithgettingtherightanswersregardlessofhowhumansmightdoit.TheinterdisciplinaryfieldofcognitivesciencebringstogethercomputermodelsfromAIandexperimentaltechniquesfrompsychologytotrytoconstructpreciseandtestabletheoriesoftheworkingsofthehumanmind.[4]4Thinkingrationally:Thelawsofthoughtapproach
TheGreekphilosopherAristotlewasoneofthefirsttoattempttocodify“rightthinking,”thatis,irrefutablereasoningprocesses.Hisfamoussyllogismsprovidedpatternsforargumentstructuresthatalwaysgavecorrectconclusionsgivencorrectpremises.Forexample,“Socratesisaman;allmenaremortal;thereforeSocratesismortal.”Theselawsofthoughtweresupposedtogoverntheoperationofthemind,andinitiatedthefieldoflogic.
Thedevelopmentofformallogicinthelatenineteenthandearlytwentiethcenturies,providedaprecisenotationforstatementsaboutallkindsofthingsintheworldandtherelationsbetweenthem.(Contrastthiswithordinaryarithmeticnotation,whichprovidesmainlyforequalityandinequalitystatementsaboutnumbers.)By1965,programsexistedthatcould,givenenoughtimeandmemory,takeadescriptionofaprobleminlogicalnotationandfindthesolutiontotheproblem,ifoneexists.(Ifthereisnosolution,theprogrammightneverstoplookingforit.)Theso-calledlogicisttraditionwithinartificialintelligencehopestobuildonsuchprogramstocreateintelligentsystems.
Therearetwomainobstaclestothisapproach.First,itisnoteasytotakeinformalknowledgeandstateitintheformaltermsrequiredbylogicalnotation,particularlywhentheknowledgeislessthan100%certain.Second,thereisabigdifferencebetweenbeingabletosolveaproblem“inprinciple”anddoingsoinpractice.Evenproblemswithjustafewdozenfactscanexhaustthecomputationalresourcesofanycomputerunlessithassomeguidanceastowhichreasoningstepstotryfirst.[5]Althoughbothoftheseobstaclesapplytoanyattempttobuildcomputationalreasoningsystems,theyappearedfirstinthelogicisttraditionbecausethepoweroftherepresentationandreasoningsystemsarewell-definedandfairlywellunderstood.5ActingRationally:theRationalAgentApproach
Actingrationallymeansactingsoastoachieveone’sgoals,givenone’sbeliefs.Anagentisjustsomethingthatperceivesandacts.(Thismaybeanunusualuseoftheword,butyouwillgetusedtoit.)Inthisapproach,AIisviewedasthestudyandconstructionofrationalagents.
Inthe“l(fā)awsofthought”approachtoAI,thewholeemphasiswasoncorrectinferences.Makingcorrectinferencesissometimespartofbeingarationalagent,becauseonewaytoactrationallyistoreasonlogicallytotheconclusionthatagivenactionwillachieveone’sgoals,andthentoactonthatconclusion.Ontheotherhand,correctinferenceisnotallofrationality,becausethereareoftensituationswherethereisnoprovablycorrectthingtodo,yetsomethingmuststillbedone.Therearealsowaysofactingrationallythatcannotbereasonablysaidtoinvolveinference.Forexample,pullingone’shandoffofahotstoveisareflexactionthatismoresuccessfulthanasloweractiontakenaftercarefuldeliberation.
Allthe“cognitiveskills”neededfortheTuringTestaretheretoallowrationalactions.Thus,weneedtheabilitytorepresentknowledgeandreasonwithitbecausethisenablesustoreachgooddecisionsinawidevarietyofsituations.Weneedtobeabletogeneratecomprehensiblesentencesinnaturallanguagebecausesayingthosesentenceshelpsusgetbyinacomplexsociety.Weneedlearningnotjustforerudition,butbecausehavingabetterideaofhowtheworldworksenablesustogeneratemoreeffectivestrategiesfordealingwithit.Weneedvisualperceptionnotjustbecauseseeingisfun,butinordertogetabetterideaofwhatanactionmightachieve—forexample,beingabletoseeatastymorselhelpsonetomovetowardit.
ThestudyofAIasrationalagentdesignthereforehastwoadvantages.First,itismoregeneralthanthe“l(fā)awsofthought”approach,becausecorrectinferenceisonlyausefulmechanismforachievingrationality,andnotanecessaryone.Second,itismoreamenabletoscientificdevelopmentthanapproachesbasedonhumanbehaviororhumanthought,becausethestandardofrationalityisclearlydefinedandcompletelygeneral.Humanbehavior,ontheotherhand,iswell-adaptedforonespecificenvironmentandistheproduct,inpart,ofacomplicatedandlargelyunknownevolutionaryprocessthatstillmaybefarfromachievingperfection.6TheStateoftheArt
InternationalgrandmasterArnoldDenkerstudiesthepiecesontheboardinfrontofhim.Herealizesthereisnohope;hemustresignthegame.Hisopponent,Hitech,becomesthefirstcomputerprogramtodefeatagrandmasterinagameofchess.
“IwanttogofromBostontoSanFrancisco,”thetravellersaysintothemicrophone.“Whatdatewillyoubetravellingon?”isthereply.ThetravellerexplainsshewantstogoOctober20th,nonstop,onthecheapestavailablefare,returningonSunday.AspeechunderstandingprogramnamedPegasushandlesthewholetransaction,whichresultsinaconfirmedreservationthatsavesthetraveller$894overtheregularcoachfare.Eventhoughthespeechrecognizergetsoneoutoftenwordswrong,itisabletorecoverfromtheseerrorsbecauseofitsunderstandingofhowdialogsareputtogether.
AnanalystintheMissionOperationsroomoftheJetPropulsionLaboratorysuddenlystartspayingattention.Aredmessagehasflashedontothescreenindicatingan“anomaly”withtheVoyagerspacecraft,whichissomewhereinthevicinityofNeptune.Fortunately,theanalystisabletocorrecttheproblemfromtheground.OperationspersonnelbelievetheproblemmighthavebeenoverlookedhaditnotbeenforMarvel,areal-timeexpertsystemthatmonitorsthemassivestreamofdatatransmittedbythespacecraft,handlingroutinetasksandalertingtheanalyststomoreseriousproblems.
CruisingthehighwayoutsideofPittsburghatacomfortable55mph,themaninthedriver’sseatseemsrelaxed.Heshouldbe—forthepast90miles,hehasnothadtotouchthesteeringwheel.Therealdriverisaroboticsystemthatgathersinputfromvideocameras,sonar,andlaserrangefindersattachedtothevan.Itcombinestheseinputswithexperiencelearnedfromtrainingrunsandsuccessfullycomputeshowtosteerthevehicle.
Aleadingexpertonlymph-nodepathologydescribesafiendishlydifficultcasetotheexpertsystem,andexaminesthesystem’sdiagnosis.Hescoffsatthesystem’sresponse.Onlyslightlyworried,thecreatorsofthesystemsuggestheaskthecomputerforanexplanationofthediagnosis.Themachinepointsoutthemajorfactorsinfluencingitsdecision,andexplainsthesubtleinteractionofseveralofthesymptomsinthiscase.Theexpertadmitshiserror,eventually.
Fromacameraperchedonastreetlightabovethecrossroads,thetrafficmonitorwatchesthescene.Ifanyhumanswereawaketoreadthemainscreen,theywouldsee“Citroen2CVturningfromPlacedelaConcordeintoChampsElysees,”“LargetruckofunknownmakestoppedonPlacedelaConcorde,”andsoonintothenight.Andoccasionally,“MajorincidentonPlacedelaConcorde,speedingvancollidedwithmotorcyclist,”andanautomaticcalltotheemergencyservices.
Thesearejustafewexamplesofartificialintelligencesystemsthatexisttoday.Notmagicorsciencefiction—butratherscience,engineering,andmathematics.1.?Homosapiensn.智人(現(xiàn)代人的學(xué)名)
2.?antigrarityn.反重力,反引力。
3.?endeavorn.努力,盡力vi.盡力,努力。
4.?dimensionn.尺寸,尺度,維(數(shù)),度(數(shù)),元。
5.?rationalityn.合理性,唯理性。
6.?hypothesisn.假設(shè)。Vocabulary
7.?aspersionn.灑水,誹謗,中傷。
8.?interrogatorn.訊問(wèn)者,質(zhì)問(wèn)者。
9.?extrapolatev.推斷,[數(shù)]外推。
10.?cognitiveadj.認(rèn)知的,認(rèn)識(shí)的,有感知的。
11.?syllogismn.[邏]三段論法,推論法,演繹。
12.?mortaln.凡人,人類adj.必死的,致命的,人類的,臨終的。
13.?agentn.代理。
14.?inferencen.推論。
15.?stateoftheartn.技術(shù)發(fā)展水平。16.?Neptunen.[天]天王星。
17.?lymphn.淋巴腺,淋巴。
18.?pathologyn.病理學(xué)。
19.?fiendishlyadv.惡魔似地,極壞地。
20.?eruditionn.博學(xué)。
[1]Althoughnoonecanpredictthefutureindetail,itisclearthatcomputerswithhuman-levelintelligence(orbetter)wouldhaveahugeimpactonoureverydaylivesandonthefuturecourseofcivilization.
雖然沒(méi)有人可以詳細(xì)地預(yù)測(cè)未來(lái),但是很顯然,具有人類智力水平(或更高水平)的電腦將會(huì)對(duì)我們的日常生活以及未來(lái)的文明進(jìn)程產(chǎn)生巨大的影響。主句中it為形式主語(yǔ),真正的主語(yǔ)是that引導(dǎo)的定語(yǔ)從句。ImportantSentences
[2]Often,scientistsinotherfieldsmovegraduallyintoartificialintelligence,wheretheyfindthetoolsandvocabularytosystematizeandautomatetheintellectualtasksonwhichtheyhavebeenworkingalltheirlives.
通常,其他領(lǐng)域的科學(xué)家逐步進(jìn)入到了人工智能領(lǐng)域,他們?cè)谀抢锇l(fā)現(xiàn)了能夠?qū)⑺麄円恢彼鶑氖碌墓ぷ飨到y(tǒng)化和自動(dòng)化的工具和詞匯。where引導(dǎo)定語(yǔ)從句,修飾“artificialintelligence”。
[3]Turing’stestdeliberatelyavoideddirectphysicalinteractionbetweentheinterrogatorandthecomputer,becausephysicalsimulationofapersonisunnecessaryforintelligence.
圖靈測(cè)試刻意回避詢問(wèn)者和計(jì)算機(jī)之間直接的物理交互,因?yàn)槿说奈锢砟M對(duì)智能來(lái)說(shuō)是不必要的。
[4]TheinterdisciplinaryfieldofcognitivesciencebringstogethercomputermodelsfromAIandexperimentaltechniquesfrompsychologytotrytoconstructpreciseandtestabletheoriesoftheworkingsofthehumanmind.
認(rèn)知科學(xué)這個(gè)跨學(xué)科領(lǐng)域匯集了人工智能學(xué)的計(jì)算機(jī)模型以及心理學(xué)的實(shí)驗(yàn)技巧,試圖構(gòu)建人類頭腦運(yùn)轉(zhuǎn)的準(zhǔn)確的、可檢驗(yàn)的理論。本句為一簡(jiǎn)單句,結(jié)構(gòu)為T(mén)heinterdisciplinaryfield…brings…to….。
[5]Evenproblemswithjustafewdozenfactscanexhaustthecomputationalresourcesofanycomputerunlessithassomeguidanceastowhichreasoningstepstotryfirst.
除非有應(yīng)該首先執(zhí)行哪個(gè)推理步驟的提示,否則即使只有幾十個(gè)論據(jù)的問(wèn)題也能耗盡任何一臺(tái)計(jì)算機(jī)的計(jì)算資源。
(1)?OnereasontostudyAIistolearnmoreaboutourselves,itisbecausethat().
A.?AIattemptstounderstandintelligententities
B.?AIattemptstobuildintelligententities
C.?AIisanintelligententities
D.?weareintelligententities
Multiple-choiceQuestions
(2)?Inthethirdparagraph,“AI,ontheotherhand,stillhasopeningsforafull-timeEinstein.”,whatisthemeaning?()
A.?InAI,there’remanynewideasforonetocontributeandmoreeasilytostudy.
B.?AIisnotoneofthenewestdisciplines.
C.?AllthegoodideashavealreadybeentakenbyGalileo,Newton,Einstein,andtherest.
D.?AIwasinitiatedformanyyears.
(3)?WhichistheTuringTest?
A.?Thecomputerandahumanshouldinterrogateeachother,andthec
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)民培訓(xùn)計(jì)劃與實(shí)施手冊(cè)
- 加工非標(biāo)制作合同范本
- 2025年度影視剪輯技術(shù)支持與咨詢服務(wù)合同
- 2025年度生物質(zhì)能發(fā)電項(xiàng)目投資與建設(shè)合同
- 公司資金借貸合同范例
- 供酒供銷(xiāo)合同范例
- 2025年度洗滌設(shè)備行業(yè)技術(shù)培訓(xùn)與咨詢服務(wù)合同
- 加工箍筋合同范本
- 買(mǎi)賣(mài)購(gòu)房指標(biāo)合同范例
- 樂(lè)有假租房合同范本
- 元宇宙視域下非遺保護(hù)與傳播途徑探究
- 2025年買(mǎi)賣(mài)個(gè)人房屋合同(4篇)
- 2025代運(yùn)營(yíng)合同范本
- 武漢2025年湖北武漢理工大學(xué)管理人員招聘筆試歷年參考題庫(kù)附帶答案詳解
- 第十一章《功和機(jī)械能》達(dá)標(biāo)測(cè)試卷(含答案)2024-2025學(xué)年度人教版物理八年級(jí)下冊(cè)
- 初三物理常識(shí)試卷單選題100道及答案
- 辦公用品價(jià)格清單
- 使用錯(cuò)誤評(píng)估報(bào)告(可用性工程)模版
- 客服人員績(jī)效考核評(píng)分表
- 變壓器檢修風(fēng)險(xiǎn)分析及管控措施
評(píng)論
0/150
提交評(píng)論