黑龍江省高中學(xué)2025屆高考壓軸卷數(shù)學(xué)試卷含解析_第1頁
黑龍江省高中學(xué)2025屆高考壓軸卷數(shù)學(xué)試卷含解析_第2頁
黑龍江省高中學(xué)2025屆高考壓軸卷數(shù)學(xué)試卷含解析_第3頁
黑龍江省高中學(xué)2025屆高考壓軸卷數(shù)學(xué)試卷含解析_第4頁
黑龍江省高中學(xué)2025屆高考壓軸卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

黑龍江省高中學(xué)2025屆高考壓軸卷數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.2.某校團委對“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”D.在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”3.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.4.記遞增數(shù)列的前項和為.若,,且對中的任意兩項與(),其和,或其積,或其商仍是該數(shù)列中的項,則()A. B.C. D.5.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件6.國家統(tǒng)計局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數(shù)為49.4%D.12個月的PMI值的中位數(shù)為50.3%7.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.8.已知函,,則的最小值為()A. B.1 C.0 D.9.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.10.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標(biāo)原點為,若,則該雙曲線的離心率為()A. B. C. D.11.集合,,則=()A. B.C. D.12.已知為拋物線的焦點,點在拋物線上,且,過點的動直線與拋物線交于兩點,為坐標(biāo)原點,拋物線的準(zhǔn)線與軸的交點為.給出下列四個命題:①在拋物線上滿足條件的點僅有一個;②若是拋物線準(zhǔn)線上一動點,則的最小值為;③無論過點的直線在什么位置,總有;④若點在拋物線準(zhǔn)線上的射影為,則三點在同一條直線上.其中所有正確命題的個數(shù)為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知是夾角為的兩個單位向量,若,,則與的夾角為______.14.已知三棱錐,,是邊長為4的正三角形,,分別是、的中點,為棱上一動點(點除外),,若異面直線與所成的角為,且,則______.15.若正實數(shù)x,y,滿足x+2y=5,則x216.已知是拋物線上一點,是圓關(guān)于直線對稱的曲線上任意一點,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標(biāo)為,求的面積.19.(12分)若函數(shù)為奇函數(shù),且時有極小值.(1)求實數(shù)的值與實數(shù)的取值范圍;(2)若恒成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.(1)若a,且a≠0,證明:函數(shù)有局部對稱點;(2)若函數(shù)在定義域內(nèi)有局部對稱點,求實數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對稱點,求實數(shù)m的取值范圍.21.(12分)表示,中的最大值,如,己知函數(shù),.(1)設(shè),求函數(shù)在上的零點個數(shù);(2)試探討是否存在實數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.22.(10分)某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區(qū),如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設(shè),用關(guān)于的函數(shù)表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

對選項逐個驗證即得答案.【詳解】對于,,是偶函數(shù),故選項錯誤;對于,,定義域為,在上不是單調(diào)函數(shù),故選項錯誤;對于,當(dāng)時,;當(dāng)時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項錯誤.故選:.【點睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.2、B【解析】

通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項.【詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【點睛】本題考查了獨立性檢驗的應(yīng)用問題,屬于基礎(chǔ)題.3、A【解析】

根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當(dāng)且僅當(dāng)時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運算,屬于中檔題.4、D【解析】

由題意可得,從而得到,再由就可以得出其它各項的值,進而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項,或者或者是該數(shù)列中的項,又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項,同理可以得到,,,也是該數(shù)列中的項,且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點睛】本題考查數(shù)列的新定義的理解和運用,以及運算能力和推理能力,屬于中檔題.5、A【解析】

試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.6、D【解析】

根據(jù)圖形中的信息,可得頻率、平均值的估計、眾數(shù)、中位數(shù),從而得到答案.【詳解】對A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數(shù)為49.4%,故C正確,;對D,12個月的PMI值的中位數(shù)為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數(shù)、中位數(shù)計算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.7、A【解析】

模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點睛】該題考查的是有關(guān)程序框圖的問題,涉及到的知識點有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.8、B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時,.故選:B.【點睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.9、B【解析】

由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎(chǔ)題.10、B【解析】

由題可知,,再結(jié)合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B【點睛】本題考查雙曲線的離心率求法,幾何性質(zhì)的應(yīng)用,屬于中檔題11、C【解析】

先化簡集合A,B,結(jié)合并集計算方法,求解,即可.【詳解】解得集合,所以,故選C.【點睛】本道題考查了集合的運算,考查了一元二次不等式解法,關(guān)鍵化簡集合A,B,難度較小.12、C【解析】

①:由拋物線的定義可知,從而可求的坐標(biāo);②:做關(guān)于準(zhǔn)線的對稱點為,通過分析可知當(dāng)三點共線時取最小值,由兩點間的距離公式,可求此時最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達(dá)定理,可知焦點坐標(biāo)的關(guān)系,進而可求,從而可判斷出的關(guān)系;④:計算直線的斜率之差,可得兩直線斜率相等,進而可判斷三點在同一條直線上.【詳解】解:對于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點有二個,故①不正確;對于②,不妨設(shè),則關(guān)于準(zhǔn)線的對稱點為,故,當(dāng)且僅當(dāng)三點共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點坐標(biāo)為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補,所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點在同一條直線上,故④正確.故選:C.【點睛】本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點的斜率公式.本題的難點在于第二個命題,結(jié)合初中的“飲馬問題”分析出何時取最小值.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

依題意可得,再根據(jù)求模,求數(shù)量積,最后根據(jù)夾角公式計算可得;【詳解】解:因為是夾角為的兩個單位向量所以,又,所以,,所以,因為所以;故答案為:【點睛】本題考查平面向量的數(shù)量積的運算律,以及夾角的計算,屬于基礎(chǔ)題.14、【解析】

取的中點,連接,,取的中點,連接,,,直線與所成的角為,計算,,根據(jù)余弦定理計算得到答案?!驹斀狻咳〉闹悬c,連接,,依題意可得,,所以平面,所以,因為,分別、的中點,所以,因為,所以,所以平面,故,故,故兩兩垂直。取的中點,連接,,,因為,所以直線與所成的角為,設(shè),則,,所以,化簡得,解得,即.故答案為:.【點睛】本題考查了根據(jù)異面直線夾角求長度,意在考查學(xué)生的計算能力和空間想象能力.15、8【解析】

分析:將題中的式子進行整理,將x+1當(dāng)做一個整體,之后應(yīng)用已知兩個正數(shù)的整式形式和為定值,求分式形式和的最值的問題的求解方法,即可求得結(jié)果.詳解:x2-3x+1+2點睛:該題屬于應(yīng)用基本不等式求最值的問題,解決該題的關(guān)鍵是需要對式子進行化簡,轉(zhuǎn)化,利用整體思維,最后注意此類問題的求解方法-------相乘,即可得結(jié)果.16、【解析】

由題意求出圓的對稱圓的圓心坐標(biāo),求出對稱圓的圓坐標(biāo)到拋物線上的點的距離的最小值,減去半徑即可得到的最小值.【詳解】假設(shè)圓心關(guān)于直線對稱的點為,則有,解方程組可得,所以曲線的方程為,圓心為,設(shè),則,又,所以,,即,所以,故答案為:.【點睛】該題考查的是有關(guān)動點距離的最小值問題,涉及到的知識點有點關(guān)于直線的對稱點,點與圓上點的距離的最小值為到圓心的距離減半徑,屬于中檔題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)化簡得到,取,解得答案.(2),解得,根據(jù)余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因為,故,.根據(jù)余弦定理:,..【點睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,余弦定理,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.18、(1)的極坐標(biāo)方程為,的直角坐標(biāo)方程為(2)【解析】

(1)先把曲線的參數(shù)方程消參后,轉(zhuǎn)化為普通方程,再利用求得極坐標(biāo)方程.將,化為,再利用求得曲線的普通方程.(2)設(shè)直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因為,故,即,即.(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點睛】本題考查極坐標(biāo)方程與直角坐標(biāo)方程、參數(shù)方程與普通方程的轉(zhuǎn)化、極坐標(biāo)的幾何意義,還考查推理論證能力以及數(shù)形結(jié)合思想,屬于中檔題.19、(1),;(2)【解析】

(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實數(shù)的值;對函數(shù)進行求導(dǎo),,通過導(dǎo)數(shù)求出,若,則恒成立不符合題意,當(dāng),可證明,此時時有極小值.(2)可知,進而得到,令,通過導(dǎo)數(shù)可知在上為單調(diào)減函數(shù),由可得,從而可求實數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當(dāng)時,;當(dāng)時,,故在上遞減,在上遞增,若,則恒成立,單調(diào)遞增,無極值點;所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點存在性定理知在區(qū)間上,存在為函數(shù)的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構(gòu)造函數(shù),所以,當(dāng)時,,即恒成立,故在上為單調(diào)減函數(shù),其中.則可轉(zhuǎn)化為,故,由,設(shè),可得當(dāng)時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉(zhuǎn)化的思想.對于恒成立的問題,常轉(zhuǎn)化為求的最小值,使;對于恒成立的問題,常轉(zhuǎn)化為求的最大值,使.20、(1)見解析(2)(3)【解析】

(1)若函數(shù)有局部對稱點,則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對稱點(2)解:由題,因為函數(shù)在定義域內(nèi)有局部對稱點所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因為,,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得【點睛】本題考查函數(shù)的局部對稱點的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問題,考查轉(zhuǎn)化思想與運算能力.21、(1)個;(1)存在,.【解析】試題分析:(1)設(shè),對其求導(dǎo),及最小值,從而得到的解析式,進一步求值域即可;(1)分別對和兩種情況進行討論,得到的解析式,進一步構(gòu)造,通過求導(dǎo)得到最值,得到滿足條件的的范圍.試題解析:(1)設(shè),.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設(shè),結(jié)合與在上圖象可知,這兩個函數(shù)的圖象在上有兩個交點,即在上零點的個數(shù)為1...........................5分(或由方程在上有兩根可得)(1)假設(shè)存在實數(shù),使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論