陜西省澄城縣城關(guān)中學(xué)2025屆高考數(shù)學(xué)押題試卷含解析_第1頁
陜西省澄城縣城關(guān)中學(xué)2025屆高考數(shù)學(xué)押題試卷含解析_第2頁
陜西省澄城縣城關(guān)中學(xué)2025屆高考數(shù)學(xué)押題試卷含解析_第3頁
陜西省澄城縣城關(guān)中學(xué)2025屆高考數(shù)學(xué)押題試卷含解析_第4頁
陜西省澄城縣城關(guān)中學(xué)2025屆高考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

陜西省澄城縣城關(guān)中學(xué)2025屆高考數(shù)學(xué)押題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)f(x)=lnA. B. C. D.2.已知點,點在曲線上運動,點為拋物線的焦點,則的最小值為()A. B. C. D.43.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標(biāo)為,則的取值范圍是()A. B. C. D.4.國家統(tǒng)計局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數(shù)為49.4%D.12個月的PMI值的中位數(shù)為50.3%5.把滿足條件(1),,(2),,使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個數(shù)為()①②③④⑤A.1個 B.2個 C.3個 D.4個6.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣127.下列函數(shù)中既關(guān)于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.8.已知集合,,,則集合()A. B. C. D.9.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.10.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④11.已知雙曲線的右焦點為,過的直線交雙曲線的漸近線于兩點,且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.12.如圖所示,三國時代數(shù)學(xué)家在《周脾算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一個內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲200顆米粒(大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.20 B.27 C.54 D.64二、填空題:本題共4小題,每小題5分,共20分。13.已知,為虛數(shù)單位,且,則=_____.14.滿足線性的約束條件的目標(biāo)函數(shù)的最大值為________15.“石頭、剪子、布”是大家熟悉的二人游戲,其規(guī)則是:在石頭、剪子和布中,二人各隨機(jī)選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸?shù)母怕适莀_____.16.已知為偶函數(shù),當(dāng)時,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若,不等式的解集;(2)若,求實數(shù)的取值范圍.18.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點為棱的中點.(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;(Ⅱ)當(dāng)二面角的余弦值為時,求直線與平面所成的角.19.(12分)設(shè)拋物線的焦點為,準(zhǔn)線為,為過焦點且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點.(1)求的值及該圓的方程;(2)設(shè)為上任意一點,過點作的切線,切點為,證明:.20.(12分)已知函數(shù)的最大值為,其中.(1)求實數(shù)的值;(2)若求證:.21.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,其前項和為,滿足,且成等差數(shù)列.(1)求的通項公式;(2)若數(shù)列滿足,求的值.22.(10分)橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)經(jīng)過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】因為fx=lnx2-4x+4x-23=2、D【解析】

如圖所示:過點作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過點作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,當(dāng),即時等號成立.故選:.【點睛】本題考查了拋物線中距離的最值問題,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.3、A【解析】

由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據(jù)雙曲線的性質(zhì)即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【點睛】本題考查了雙曲線定義的應(yīng)用,考查了轉(zhuǎn)化化歸思想,屬于中檔題.4、D【解析】

根據(jù)圖形中的信息,可得頻率、平均值的估計、眾數(shù)、中位數(shù),從而得到答案.【詳解】對A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數(shù)為49.4%,故C正確,;對D,12個月的PMI值的中位數(shù)為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數(shù)、中位數(shù)計算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.5、B【解析】

滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點對稱,分別對所給函數(shù)進(jìn)行驗證.【詳解】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.【點睛】本題考查新定義函數(shù)的問題,涉及到函數(shù)的性質(zhì),考查學(xué)生邏輯推理與分析能力,是一道容易題.6、D【解析】

分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,,然后計算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因為直線經(jīng)過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數(shù),屬基礎(chǔ)題。7、C【解析】

根據(jù)函數(shù)的對稱性和單調(diào)性的特點,利用排除法,即可得出答案.【詳解】A中,當(dāng)時,,所以不關(guān)于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關(guān)于直線對稱,則錯誤;故選:C.【點睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調(diào)性,屬于基礎(chǔ)題.8、D【解析】

根據(jù)集合的混合運算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎(chǔ)題.9、D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.10、D【解析】

利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進(jìn)行選擇.【詳解】當(dāng)兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,是中檔題.11、B【解析】

先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標(biāo),利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點睛】本題考查雙曲線的簡單性質(zhì),考查向量知識,考查學(xué)生的計算能力,屬于中檔題.12、B【解析】

設(shè)大正方體的邊長為,從而求得小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,利用概率模擬列方程即可求解?!驹斀狻吭O(shè)大正方體的邊長為,則小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應(yīng)用,考查計算能力,屬于基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】

解:利用復(fù)數(shù)相等,可知由有.14、1【解析】

作出不等式組表示的平面區(qū)域,將直線進(jìn)行平移,利用的幾何意義,可求出目標(biāo)函數(shù)的最大值。【詳解】由,得,作出可行域,如圖所示:平移直線,由圖像知,當(dāng)直線經(jīng)過點時,截距最小,此時取得最大值。由,解得,代入直線,得?!军c睛】本題主要考查簡單的線性規(guī)劃問題的解法——平移法。15、【解析】

用樹狀圖法列舉出所有情況,得出甲不輸?shù)慕Y(jié)果數(shù),再計算即得.【詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【點睛】本題考查隨機(jī)事件的概率,是基礎(chǔ)題.16、【解析】

由偶函數(shù)的性質(zhì)直接求解即可【詳解】.故答案為【點睛】本題考查函數(shù)的奇偶性,對數(shù)函數(shù)的運算,考查運算求解能力三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)依題意可得,再用零點分段法分類討論可得;(2)依題意可得對恒成立,根據(jù)絕對值的幾何意義將絕對值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,,則,即,當(dāng)時,原不等式等價于,解得當(dāng)時,原不等式等價于,解得,所以;當(dāng)時,原不等式等價于,解得;綜上,原不等式的解集為;(2)即,得或,由解得,由解得,要使得的解集為,則解得,故的取值范圍是.【點睛】本題考查絕對值不等式的解法,著重考查等價轉(zhuǎn)化思想與分類討論思想的綜合應(yīng)用,屬于中檔題.18、(1)見解析(2)【解析】

(Ⅰ)取的中點,連結(jié)、,得到故且,進(jìn)而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標(biāo)原點建立如圖空間直角坐標(biāo)系,設(shè),求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進(jìn)而得到為直線與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點,使得平面,點為棱的中點.理由如下:取的中點,連結(jié)、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標(biāo)原點建立如圖空間直角坐標(biāo)系,設(shè),則由題意知,,,,,,設(shè)平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內(nèi)的射影為,所以為直線與平面所成的角,易知在中,,從而,所以直線與平面所成的角為.【點睛】本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴(yán)密推理,明確角的構(gòu)成,著重考查了分析問題和解答問題的能力.19、(1),圓的方程為:.(2)答案見解析【解析】

(1)根據(jù)題意,可知點的坐標(biāo)為,即可求出的值,即可求出該圓的方程;(2)由題易知,直線的斜率存在且不為0,設(shè)的方程為,與拋物線聯(lián)立方程組,根據(jù),求得,化簡解得,進(jìn)而求得點的坐標(biāo)為,分別求出,,利用向量的數(shù)量積為0,即可證出.【詳解】解:(1)易知點的坐標(biāo)為,所以,解得.又圓的圓心為,所以圓的方程為.(2)證明易知,直線的斜率存在且不為0,設(shè)的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點的坐標(biāo)為.所以,,.故.【點睛】本題考查拋物線的標(biāo)準(zhǔn)方程和圓的方程,考查直線和拋物線的位置關(guān)系,利用聯(lián)立方程組、求交點坐標(biāo)以及向量的數(shù)量積,考查解題能力和計算能力.20、(1)1;(2)證明見解析.【解析】

(1)利用零點分段法將表示為分段函數(shù)的形式,由此求得的最大值,進(jìn)而求得的值.(2)利用(1)的結(jié)論,將轉(zhuǎn)化為,求得的取值范圍,利用換元法,結(jié)合函數(shù)的單調(diào)性,證得,由此證得不等式成立.【詳解】(1)當(dāng)時,取得最大值.(2)證明:由(1)得,,,當(dāng)且僅當(dāng)時等號成立,令,則在上單調(diào)遞減當(dāng)時,.【點睛】本小題主要考查含有絕對值的函數(shù)的最值的求法,考查利用基本不等式進(jìn)行證明,屬于中檔題.21、(1)(2)【解析】

(1)由公比表示出,由成等差數(shù)列可求得,從而數(shù)列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論