常州工學院《機器視覺》2022-2023學年第一學期期末試卷_第1頁
常州工學院《機器視覺》2022-2023學年第一學期期末試卷_第2頁
常州工學院《機器視覺》2022-2023學年第一學期期末試卷_第3頁
常州工學院《機器視覺》2022-2023學年第一學期期末試卷_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁常州工學院

《機器視覺》2022-2023學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺在文物保護和數(shù)字化中的應用可以幫助記錄和分析文物信息。假設要對一件古老的雕塑進行三維數(shù)字化和表面紋理分析,以下關于文物保護計算機視覺應用的描述,正確的是:()A.傳統(tǒng)的攝影測量方法在文物數(shù)字化中比基于深度學習的方法更精確B.文物的復雜形狀和表面材質對數(shù)字化和分析過程沒有挑戰(zhàn)C.結合多種成像技術和計算機視覺算法能夠更全面地獲取文物的信息D.文物保護中的計算機視覺應用不需要考慮對文物的非接觸性和無損性要求2、圖像分割是將圖像分成不同的區(qū)域或對象。假設要對醫(yī)學影像中的腫瘤區(qū)域進行精確分割,以下關于圖像分割方法的描述,正確的是:()A.手動分割是最準確的方法,不需要借助計算機算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學影像分割問題C.深度學習中的全卷積網(wǎng)絡(FCN)及其變體在醫(yī)學圖像分割中具有很大的潛力D.圖像分割的結果只取決于所使用的分割算法,與圖像的預處理無關3、在計算機視覺的場景理解任務中,需要理解整個圖像的語義信息。假設要分析一張城市街道的圖像中包含的物體和它們之間的關系,以下關于場景理解方法的描述,正確的是:()A.單獨對圖像中的每個物體進行識別和分類就能實現(xiàn)場景理解B.忽略圖像中的上下文信息和空間布局對場景理解沒有影響C.利用深度學習中的語義分割和圖模型可以更好地理解場景的結構和語義關系D.場景理解只適用于簡單的室內(nèi)場景,對于復雜的戶外場景無法處理4、圖像分割是將圖像細分為不同的區(qū)域或對象。假設我們需要對醫(yī)學圖像中的腫瘤進行精確分割,以輔助醫(yī)生進行診斷和治療。在這種對精度要求很高的應用中,以下哪種圖像分割方法可能更合適?()A.基于閾值的圖像分割B.基于邊緣檢測的圖像分割C.基于區(qū)域生長的圖像分割D.基于深度學習的語義分割算法,如U-Net5、在計算機視覺的醫(yī)學圖像分析中,例如對腫瘤的檢測和分割。假設醫(yī)學圖像的質量較差,存在噪聲和偽影,以下哪種預處理方法可能有助于提高后續(xù)分析的準確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉6、當進行圖像的目標計數(shù)任務時,假設要統(tǒng)計一張圖像中某種物體的數(shù)量,例如統(tǒng)計羊群中的羊的數(shù)量。以下哪種方法可能更準確地完成計數(shù)任務?()A.基于深度學習的目標計數(shù)模型B.手動逐個計數(shù)C.估計圖像中物體的平均大小,然后計算總面積來推算數(shù)量D.隨機猜測物體的數(shù)量7、在計算機視覺的圖像壓縮任務中,需要在減少數(shù)據(jù)量的同時盡量保持圖像的質量。假設要對一組高清圖像進行壓縮,以節(jié)省存儲空間和傳輸帶寬,同時要求解壓后的圖像能夠滿足一定的視覺要求。以下哪種圖像壓縮算法在這種情況下效果較好?()A.JPEG壓縮算法B.PNG壓縮算法C.WebP壓縮算法D.BPG壓縮算法8、計算機視覺中的目標計數(shù)是估計圖像或視頻中目標的數(shù)量。假設要在一張人群圖像中準確計數(shù)人數(shù),以下關于目標計數(shù)方法的描述,正確的是:()A.基于檢測的計數(shù)方法通過檢測每個個體來實現(xiàn)計數(shù),對密集場景效果好B.基于回歸的計數(shù)方法直接預測目標數(shù)量,計算速度快但精度較低C.深度學習中的注意力機制在目標計數(shù)中沒有作用,不能提高計數(shù)準確性D.目標計數(shù)只需要考慮目標的外觀特征,不需要考慮圖像的上下文信息9、在計算機視覺中,特征提取是非常關鍵的一步。假設我們要對一組風景圖像進行特征提取,以便后續(xù)的圖像檢索和分類任務。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對圖像的旋轉、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經(jīng)網(wǎng)絡自動學習的特征10、計算機視覺中的遙感圖像分析用于獲取地球表面的信息。假設要從衛(wèi)星遙感圖像中分析土地利用類型和植被覆蓋情況,同時要克服圖像的大尺度和復雜的地物分布。以下哪種遙感圖像分析方法最為有效?()A.基于光譜特征的分析B.基于紋理特征的分析C.基于對象的圖像分析D.基于深度學習的分析11、計算機視覺在醫(yī)療手術中的應用可以為醫(yī)生提供輔助和支持。假設在一個微創(chuàng)手術中,計算機視覺用于引導手術器械。以下關于計算機視覺在醫(yī)療手術中的描述,哪一項是不正確的?()A.可以通過實時圖像分析,為醫(yī)生提供器械與組織的相對位置和姿態(tài)信息B.能夠對手術區(qū)域進行精準的分割和標注,幫助醫(yī)生識別關鍵結構C.計算機視覺在醫(yī)療手術中的應用已經(jīng)非常成熟,不存在任何風險和誤差D.可以與機器人手術系統(tǒng)結合,實現(xiàn)更精確和穩(wěn)定的手術操作12、對于視頻中的目標跟蹤任務,假設目標在視頻中經(jīng)歷了快速的外觀變化和嚴重的遮擋。以下哪種策略有助于保持跟蹤的準確性和穩(wěn)定性?()A.結合目標的運動模型和外觀模型進行預測B.僅依賴目標的初始外觀特征進行跟蹤C.當出現(xiàn)遮擋時,停止跟蹤并等待目標重新出現(xiàn)D.隨機調整跟蹤算法的參數(shù)13、計算機視覺中的紋理分析用于描述圖像中重復出現(xiàn)的模式和結構。假設要對一塊布料的紋理進行分析,以判斷其材質和質量,同時布料可能存在褶皺和變形。以下哪種紋理分析方法在處理這種復雜情況時更為準確?()A.統(tǒng)計紋理分析B.結構紋理分析C.基于模型的紋理分析D.基于深度學習的紋理分析14、計算機視覺中的動作識別是對視頻中人物或物體的動作進行分類和理解。假設要識別一段舞蹈視頻中的各種舞蹈動作,同時要考慮動作的速度、幅度和風格的變化。以下哪種動作識別方法在處理這種復雜的動作模式時表現(xiàn)更好?()A.基于手工特征的動作識別B.基于時空興趣點的動作識別C.基于深度學習的時空卷積網(wǎng)絡D.基于隱馬爾可夫模型的動作識別15、在計算機視覺的應用中,人臉識別是一個常見的任務。假設一個公司要建立一個門禁系統(tǒng),通過人臉識別來允許員工進入。為了提高人臉識別的準確性和魯棒性,以下哪種技術通常會被采用?()A.基于幾何特征的人臉識別B.基于模板匹配的人臉識別C.基于深度學習的人臉識別,結合多模態(tài)數(shù)據(jù)D.基于顏色特征的人臉識別16、假設要開發(fā)一個能夠自動識別水果種類和品質的計算機視覺系統(tǒng),用于水果分揀和質量評估。在獲取水果圖像時,可能會受到光照、角度和遮擋等因素的影響。為了提高識別的準確性和魯棒性,以下哪種圖像預處理技術可能是關鍵?()A.圖像增強B.圖像去噪C.圖像歸一化D.圖像分割17、在計算機視覺的圖像生成任務中,假設要生成具有真實感的自然圖像。以下關于圖像生成方法的描述,正確的是:()A.生成對抗網(wǎng)絡(GAN)能夠生成逼真的圖像,但訓練過程不穩(wěn)定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質量的圖像D.所有的圖像生成方法都能夠生成與真實世界完全一致的圖像18、計算機視覺中的行人重識別是指在不同攝像頭拍攝的圖像中識別出同一個行人。假設要在一個大型商場的監(jiān)控系統(tǒng)中實現(xiàn)行人重識別,以下關于行人重識別方法的描述,正確的是:()A.基于顏色和紋理特征的方法對行人的姿態(tài)和光照變化不敏感,識別準確率高B.深度學習中的度量學習方法能夠學習到行人的判別性特征,但容易受到背景干擾C.行人重識別系統(tǒng)只需要關注行人的外觀特征,不需要考慮行人的行為特征D.行人重識別在不同場景和攝像頭視角下的性能始終保持穩(wěn)定,不受影響19、在計算機視覺的目標跟蹤任務中,假設要在一段視頻中持續(xù)跟蹤一個移動的物體,例如跟蹤一只飛行的鳥。物體可能會被其他物體遮擋,并且外觀可能會發(fā)生變化。以下哪種目標跟蹤方法在這種復雜情況下更有可能成功?()A.基于卡爾曼濾波的跟蹤方法,預測物體的位置和速度B.基于深度學習的Siamese網(wǎng)絡跟蹤方法C.只在視頻的起始幀確定目標位置,后續(xù)幀不再跟蹤D.隨機選擇視頻中的區(qū)域作為跟蹤目標20、計算機視覺在農(nóng)業(yè)中的應用可以幫助監(jiān)測農(nóng)作物的生長狀況。假設要通過圖像分析判斷農(nóng)作物的病蟲害程度,以下關于農(nóng)業(yè)計算機視覺應用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準確判斷病蟲害的程度B.不同農(nóng)作物品種和生長階段對病蟲害判斷的影響不大C.結合圖像的紋理、形狀和顏色等多特征,可以更準確地評估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復雜性對計算機視覺的應用沒有挑戰(zhàn)二、簡答題(本大題共3個小題,共15分)1、(本題5分)說明計算機視覺在海洋生態(tài)系統(tǒng)評估中的應用。2、(本題5分)簡述計算機視覺在紡織業(yè)中的應用。3、(本題5分)描述計算機視覺在海洋能源勘探中的應用。三、分析題(本大題共5個小題,共25分)1、(本題5分)觀察某城市的戶外廣告設計,分析其在創(chuàng)意、位置選擇、尺寸和形式等方面如何與城市環(huán)境相融合,同時有效地傳達廣告信息。2、(本題5分)探討一本暢銷書籍的封面設計,研究其如何運用圖像、字體和排版來吸引讀者,傳達書籍的主題和風格,以及如何與書籍的內(nèi)容和目標讀者群相契合。3、(本題5分)一家幼兒園的環(huán)境設計充滿了童趣和溫馨,為孩子們創(chuàng)造了良好的學習和成長空間。請?zhí)接懎h(huán)境設計在色彩搭配、裝飾圖案、功能區(qū)域劃

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論