版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)安徽大學(xué)
《智能人機(jī)交互》2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的發(fā)展中,倫理原則和規(guī)范的制定至關(guān)重要。以下關(guān)于人工智能倫理原則的敘述,不正確的是()A.應(yīng)遵循公平、公正、透明和可解釋的原則,確保人工智能系統(tǒng)的決策不帶有偏見(jiàn)B.要保障人類(lèi)的安全和福祉,避免人工智能對(duì)人類(lèi)造成潛在的危害C.知識(shí)產(chǎn)權(quán)和隱私保護(hù)在人工智能倫理中不重要,可以忽略D.鼓勵(lì)公眾參與和監(jiān)督人工智能的發(fā)展,促進(jìn)社會(huì)對(duì)人工智能的信任2、人工智能中的預(yù)訓(xùn)練語(yǔ)言模型,如GPT-3,具有很強(qiáng)的語(yǔ)言理解和生成能力。假設(shè)要將這樣的預(yù)訓(xùn)練模型應(yīng)用于特定的任務(wù),以下關(guān)于模型應(yīng)用的描述,正確的是:()A.可以直接在預(yù)訓(xùn)練模型上進(jìn)行微調(diào),就能適應(yīng)新的任務(wù),無(wú)需額外的訓(xùn)練數(shù)據(jù)B.預(yù)訓(xùn)練模型的參數(shù)固定,不能根據(jù)任務(wù)需求進(jìn)行調(diào)整和優(yōu)化C.預(yù)訓(xùn)練模型的語(yǔ)言生成能力很強(qiáng),但在特定領(lǐng)域的專(zhuān)業(yè)知識(shí)上可能存在不足D.預(yù)訓(xùn)練模型在所有自然語(yǔ)言處理任務(wù)中都能取得最優(yōu)的效果3、人工智能中的語(yǔ)音識(shí)別技術(shù)正在改變?nèi)藗兣c計(jì)算機(jī)的交互方式。假設(shè)要開(kāi)發(fā)一個(gè)能夠準(zhǔn)確識(shí)別不同口音和語(yǔ)速的語(yǔ)音識(shí)別系統(tǒng)。以下關(guān)于語(yǔ)音識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.特征提取是語(yǔ)音識(shí)別中的關(guān)鍵步驟,用于將語(yǔ)音信號(hào)轉(zhuǎn)換為可處理的特征向量B.聲學(xué)模型和語(yǔ)言模型共同作用,提高語(yǔ)音識(shí)別的準(zhǔn)確率C.語(yǔ)音識(shí)別系統(tǒng)對(duì)于背景噪音和多人同時(shí)說(shuō)話的場(chǎng)景能夠輕松應(yīng)對(duì),不受任何影響D.不斷增加訓(xùn)練數(shù)據(jù)的多樣性和規(guī)模,可以改善語(yǔ)音識(shí)別系統(tǒng)在復(fù)雜場(chǎng)景下的性能4、人工智能中的模型評(píng)估指標(biāo)對(duì)于衡量模型性能至關(guān)重要。假設(shè)要評(píng)估一個(gè)二分類(lèi)模型的性能,除了準(zhǔn)確率之外,以下哪種指標(biāo)在某些情況下更能反映模型的實(shí)際效果,特別是當(dāng)類(lèi)別分布不均衡時(shí)?()A.召回率B.F1值C.精確率D.均方誤差5、人工智能在智能推薦系統(tǒng)中的應(yīng)用越來(lái)越普遍。假設(shè)要為一個(gè)電商平臺(tái)開(kāi)發(fā)推薦系統(tǒng),以下關(guān)于考慮用戶興趣動(dòng)態(tài)變化的方法,哪一項(xiàng)是最重要的?()A.定期重新訓(xùn)練模型,以反映用戶興趣的最新變化B.只根據(jù)用戶的歷史購(gòu)買(mǎi)記錄進(jìn)行推薦,不考慮近期行為C.為用戶推薦始終不變的熱門(mén)商品,不考慮其個(gè)人興趣D.隨機(jī)推薦商品,期望能夠滿足用戶的動(dòng)態(tài)興趣6、在人工智能的圖像語(yǔ)義分割任務(wù)中,需要將圖像中的每個(gè)像素分配到不同的類(lèi)別,例如將一幅街景圖像中的道路、建筑物、車(chē)輛等區(qū)分開(kāi)來(lái)。假設(shè)圖像中的物體邊界模糊、類(lèi)別多樣,以下哪種方法能夠提高語(yǔ)義分割的精度?()A.使用更高分辨率的圖像進(jìn)行訓(xùn)練B.采用簡(jiǎn)單的分割算法,降低計(jì)算復(fù)雜度C.忽略物體邊界的像素,只關(guān)注主要區(qū)域D.不進(jìn)行任何預(yù)處理,直接對(duì)原始圖像進(jìn)行分割7、人工智能在物流領(lǐng)域的應(yīng)用能夠提高物流效率和服務(wù)質(zhì)量。以下關(guān)于人工智能在物流應(yīng)用的敘述,不正確的是()A.可以通過(guò)路徑規(guī)劃算法優(yōu)化貨物運(yùn)輸路線,降低運(yùn)輸成本B.利用圖像識(shí)別技術(shù)實(shí)現(xiàn)貨物的自動(dòng)分揀和識(shí)別C.人工智能在物流領(lǐng)域的應(yīng)用面臨數(shù)據(jù)安全和隱私保護(hù)等挑戰(zhàn)D.物流領(lǐng)域?qū)θ斯ぶ悄芗夹g(shù)的需求不高,傳統(tǒng)的管理方法已經(jīng)足夠滿足需求8、在人工智能的倫理和社會(huì)影響方面,存在許多需要思考的問(wèn)題。假設(shè)一個(gè)基于人工智能的招聘系統(tǒng)根據(jù)候選人的簡(jiǎn)歷和面試表現(xiàn)進(jìn)行篩選。以下關(guān)于這種系統(tǒng)可能帶來(lái)的潛在問(wèn)題,哪一項(xiàng)是最值得關(guān)注的?()A.系統(tǒng)可能會(huì)因?yàn)閿?shù)據(jù)偏差而對(duì)某些群體產(chǎn)生不公平的篩選結(jié)果B.系統(tǒng)的決策過(guò)程過(guò)于透明,導(dǎo)致企業(yè)招聘策略被競(jìng)爭(zhēng)對(duì)手輕易了解C.系統(tǒng)可能會(huì)過(guò)于依賴簡(jiǎn)歷信息,而忽略了候選人的實(shí)際能力和潛力D.系統(tǒng)的運(yùn)行成本過(guò)高,對(duì)企業(yè)造成經(jīng)濟(jì)負(fù)擔(dān)9、在人工智能的文本分類(lèi)任務(wù)中,例如將新聞文章分類(lèi)為政治、經(jīng)濟(jì)、體育等類(lèi)別。假設(shè)數(shù)據(jù)集存在類(lèi)別不平衡的問(wèn)題,某些類(lèi)別的樣本數(shù)量遠(yuǎn)遠(yuǎn)多于其他類(lèi)別。為了提高分類(lèi)模型在這種情況下的性能,以下哪種方法是有效的?()A.對(duì)少數(shù)類(lèi)進(jìn)行過(guò)采樣,增加其數(shù)量B.對(duì)多數(shù)類(lèi)進(jìn)行欠采樣,減少其數(shù)量C.使用不平衡數(shù)據(jù)直接訓(xùn)練模型,不做處理D.只關(guān)注樣本數(shù)量多的類(lèi)別,忽略少數(shù)類(lèi)別10、人工智能中的遷移學(xué)習(xí)技術(shù)可以利用已有的知識(shí)和模型來(lái)解決新的問(wèn)題。假設(shè)已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個(gè)新的、但相關(guān)的圖像分類(lèi)任務(wù)。以下哪種遷移學(xué)習(xí)策略最有可能取得較好的效果?()A.直接使用原模型進(jìn)行預(yù)測(cè)B.微調(diào)原模型的部分層C.重新訓(xùn)練一個(gè)新的模型D.對(duì)原模型進(jìn)行壓縮11、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開(kāi)發(fā)一個(gè)系統(tǒng)來(lái)監(jiān)測(cè)農(nóng)田中的病蟲(chóng)害情況,需要能夠準(zhǔn)確識(shí)別病蟲(chóng)害的類(lèi)型和嚴(yán)重程度。以下哪種圖像分析技術(shù)和機(jī)器學(xué)習(xí)算法的組合在這個(gè)任務(wù)中最為有效?()A.圖像分割技術(shù)結(jié)合決策樹(shù)算法B.目標(biāo)檢測(cè)技術(shù)結(jié)合支持向量機(jī)算法C.特征提取技術(shù)結(jié)合樸素貝葉斯算法D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)合隨機(jī)森林算法12、人工智能中的專(zhuān)家系統(tǒng)是一種基于知識(shí)的系統(tǒng)。假設(shè)有一個(gè)用于故障診斷的專(zhuān)家系統(tǒng),需要將專(zhuān)家的知識(shí)和經(jīng)驗(yàn)轉(zhuǎn)化為系統(tǒng)的規(guī)則和推理機(jī)制。以下關(guān)于專(zhuān)家系統(tǒng)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.專(zhuān)家系統(tǒng)的性能取決于知識(shí)的準(zhǔn)確性和完整性B.專(zhuān)家系統(tǒng)能夠處理不確定性和模糊性的知識(shí)C.專(zhuān)家系統(tǒng)的開(kāi)發(fā)需要大量的時(shí)間和專(zhuān)業(yè)知識(shí)D.專(zhuān)家系統(tǒng)一旦開(kāi)發(fā)完成,就不需要進(jìn)行更新和維護(hù)13、在人工智能的模型訓(xùn)練中,過(guò)擬合是一個(gè)常見(jiàn)的問(wèn)題。假設(shè)一個(gè)模型在訓(xùn)練集上表現(xiàn)非常好,但在測(cè)試集上性能很差。為了緩解過(guò)擬合,以下哪種方法是有效的?()A.增加訓(xùn)練數(shù)據(jù)的數(shù)量B.減少模型的復(fù)雜度C.應(yīng)用正則化技術(shù),如L1和L2正則化D.以上都是14、圖像識(shí)別是人工智能的一個(gè)重要應(yīng)用領(lǐng)域。假設(shè)一個(gè)安防系統(tǒng)需要通過(guò)攝像頭實(shí)時(shí)識(shí)別出特定的人物或物體。以下關(guān)于圖像識(shí)別技術(shù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.深度學(xué)習(xí)算法在圖像識(shí)別中表現(xiàn)出色,能夠自動(dòng)學(xué)習(xí)圖像的特征B.圖像識(shí)別系統(tǒng)需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練,以提高識(shí)別準(zhǔn)確率C.圖像的光照、角度和背景變化等因素會(huì)對(duì)識(shí)別結(jié)果產(chǎn)生較大影響D.一旦圖像識(shí)別模型訓(xùn)練完成,就無(wú)需再進(jìn)行更新和改進(jìn),可以一直準(zhǔn)確識(shí)別各種新的圖像15、當(dāng)利用人工智能進(jìn)行音樂(lè)創(chuàng)作,生成具有創(chuàng)新性和藝術(shù)價(jià)值的音樂(lè)作品,以下哪種方法和技術(shù)可能會(huì)被運(yùn)用?()A.基于模板的生成B.基于風(fēng)格遷移C.基于生成模型D.以上都是16、在人工智能的機(jī)器人控制領(lǐng)域,強(qiáng)化學(xué)習(xí)可以讓機(jī)器人通過(guò)與環(huán)境的交互不斷優(yōu)化自己的行為。假設(shè)一個(gè)機(jī)器人需要學(xué)會(huì)在不同地形上行走,以下哪個(gè)因素對(duì)于強(qiáng)化學(xué)習(xí)的效果影響最大?()A.環(huán)境的復(fù)雜度B.機(jī)器人的初始狀態(tài)C.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)D.機(jī)器人的硬件性能17、在人工智能的情感計(jì)算領(lǐng)域,除了文本和語(yǔ)音,面部表情的分析也具有重要意義。假設(shè)要開(kāi)發(fā)一個(gè)能夠?qū)崟r(shí)分析人類(lèi)面部表情來(lái)推斷情感狀態(tài)的系統(tǒng),以下哪種方法在準(zhǔn)確性和實(shí)時(shí)性方面面臨更大的挑戰(zhàn)?()A.基于傳統(tǒng)計(jì)算機(jī)視覺(jué)的方法B.基于深度學(xué)習(xí)的方法C.基于傳感器的方法D.以上方法難度相當(dāng)18、假設(shè)要開(kāi)發(fā)一個(gè)能夠輔助醫(yī)生進(jìn)行疾病診斷的人工智能系統(tǒng),需要整合多種醫(yī)療數(shù)據(jù),如病歷、影像、檢驗(yàn)報(bào)告等。在這個(gè)過(guò)程中,以下哪個(gè)環(huán)節(jié)可能是最具挑戰(zhàn)性的?()A.數(shù)據(jù)的清洗和預(yù)處理B.多模態(tài)數(shù)據(jù)的融合C.模型的訓(xùn)練和優(yōu)化D.模型的解釋和可信賴性19、在人工智能的圖像分割任務(wù)中,需要將圖像劃分成不同的區(qū)域。假設(shè)要對(duì)醫(yī)學(xué)影像中的病變區(qū)域進(jìn)行分割,以下關(guān)于圖像分割技術(shù)的描述,正確的是:()A.傳統(tǒng)的圖像分割方法在處理復(fù)雜的醫(yī)學(xué)影像時(shí)效果總是優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的全卷積神經(jīng)網(wǎng)絡(luò)(FCN)在醫(yī)學(xué)圖像分割中能夠自動(dòng)學(xué)習(xí)特征,具有很大的潛力C.圖像分割的結(jié)果只取決于所使用的算法,與圖像的質(zhì)量和分辨率無(wú)關(guān)D.圖像分割技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和改進(jìn)20、在人工智能的研究中,可解釋性是一個(gè)重要的問(wèn)題。假設(shè)開(kāi)發(fā)了一個(gè)用于醫(yī)療診斷的人工智能模型,以下關(guān)于模型可解釋性的描述,哪一項(xiàng)是不正確的?()A.解釋模型的決策過(guò)程和依據(jù),有助于提高醫(yī)生對(duì)診斷結(jié)果的信任度B.特征重要性分析可以幫助理解哪些輸入特征對(duì)診斷結(jié)果影響較大C.深度學(xué)習(xí)模型由于其復(fù)雜性,無(wú)法進(jìn)行任何形式的解釋D.開(kāi)發(fā)具有可解釋性的人工智能模型對(duì)于醫(yī)療等關(guān)鍵領(lǐng)域至關(guān)重要二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)簡(jiǎn)述人工智能在材料科學(xué)中的發(fā)展。2、(本題5分)談?wù)勅斯ぶ悄茉谥悄軇?chuàng)新項(xiàng)目評(píng)估中的方法。3、(本題5分)說(shuō)明人工智能在質(zhì)量改進(jìn)和持續(xù)優(yōu)化中的策略。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)考察一個(gè)基于人工智能的自動(dòng)駕駛汽車(chē)項(xiàng)目,討論其在感知、決策和控制方面所采用的技術(shù),以及面臨的法律和道德挑戰(zhàn)。2、(本題5分)以某智能招聘系統(tǒng)為例,研究人工智能在人才篩選和匹配中的應(yīng)用。3、(本題5分)研究一個(gè)利用人工智能進(jìn)行藝術(shù)作品鑒定的實(shí)例,分析其鑒定標(biāo)準(zhǔn)和可靠性。4、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能民間藝術(shù)傳承保護(hù)系統(tǒng),探討其如何記錄和傳承民間藝術(shù)。5、(本題5分)考察某智能民間
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度旅行社旅游人才招聘與培訓(xùn)合同4篇
- 2025年度鋁灰運(yùn)輸合同范本-鋁灰運(yùn)輸與智能化管理合作協(xié)議4篇
- 2025年度智慧城市建設(shè)產(chǎn)品置換與規(guī)劃實(shí)施協(xié)議3篇
- 2024版國(guó)際采購(gòu)合同正規(guī)范本
- 我是小小美食家(說(shuō)課稿)-2023-2024學(xué)年三年級(jí)下冊(cè)綜合實(shí)踐活動(dòng)粵教版
- 2024運(yùn)輸分包合同集合
- 專(zhuān)職護(hù)理員勞動(dòng)合同(2024年修訂)
- 二零二五年度綠色建筑項(xiàng)目安全生產(chǎn)承包合同書(shū)
- 二零二五年度馬鈴薯種植基地現(xiàn)代農(nóng)業(yè)示范區(qū)建設(shè)合同4篇
- Unit 1 Friendship-Section 2 說(shuō)課稿 2024-2025學(xué)年滬教版英語(yǔ)七年級(jí)上冊(cè)
- 三年級(jí)數(shù)學(xué)(上)計(jì)算題專(zhuān)項(xiàng)練習(xí)附答案
- GB/T 12723-2024單位產(chǎn)品能源消耗限額編制通則
- 2024年廣東省深圳市中考英語(yǔ)試題含解析
- GB/T 16288-2024塑料制品的標(biāo)志
- 麻風(fēng)病防治知識(shí)課件
- 建筑工程施工圖設(shè)計(jì)文件審查辦法
- 干部職級(jí)晉升積分制管理辦法
- 培訓(xùn)機(jī)構(gòu)應(yīng)急預(yù)案6篇
- 北師大版數(shù)學(xué)五年級(jí)上冊(cè)口算專(zhuān)項(xiàng)練習(xí)
- 應(yīng)急物資智能調(diào)配系統(tǒng)解決方案
- 2025年公務(wù)員考試時(shí)政專(zhuān)項(xiàng)測(cè)驗(yàn)100題及答案
評(píng)論
0/150
提交評(píng)論