![2025屆云南省曲靖市麒麟區(qū)五中高三3月份第一次模擬考試數學試卷含解析_第1頁](http://file4.renrendoc.com/view14/M01/1A/03/wKhkGWdaPT-AaIo7AAGsynwL6PU984.jpg)
![2025屆云南省曲靖市麒麟區(qū)五中高三3月份第一次模擬考試數學試卷含解析_第2頁](http://file4.renrendoc.com/view14/M01/1A/03/wKhkGWdaPT-AaIo7AAGsynwL6PU9842.jpg)
![2025屆云南省曲靖市麒麟區(qū)五中高三3月份第一次模擬考試數學試卷含解析_第3頁](http://file4.renrendoc.com/view14/M01/1A/03/wKhkGWdaPT-AaIo7AAGsynwL6PU9843.jpg)
![2025屆云南省曲靖市麒麟區(qū)五中高三3月份第一次模擬考試數學試卷含解析_第4頁](http://file4.renrendoc.com/view14/M01/1A/03/wKhkGWdaPT-AaIo7AAGsynwL6PU9844.jpg)
![2025屆云南省曲靖市麒麟區(qū)五中高三3月份第一次模擬考試數學試卷含解析_第5頁](http://file4.renrendoc.com/view14/M01/1A/03/wKhkGWdaPT-AaIo7AAGsynwL6PU9845.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省曲靖市麒麟區(qū)五中高三3月份第一次模擬考試數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.2.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]3.已知集合,集合,則A. B.或C. D.4.已知函數是定義在R上的奇函數,且滿足,當時,(其中e是自然對數的底數),若,則實數a的值為()A. B.3 C. D.5.木匠師傅對一個圓錐形木件進行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.6.已知函數,則()A.2 B.3 C.4 D.57.執(zhí)行如圖所示的程序框圖,輸出的結果為()A. B.4 C. D.8.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.639.函數的大致圖像為()A. B.C. D.10.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,11.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.64212.為了進一步提升駕駛人交通安全文明意識,駕考新規(guī)要求駕校學員必須到街道路口執(zhí)勤站崗,協助交警勸導交通.現有甲、乙等5名駕校學員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種二、填空題:本題共4小題,每小題5分,共20分。13.設滿足約束條件且的最小值為7,則=_________.14.某校名學生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學生扮演的角色有名士兵和名司令,其余角色各人,現在新加入名學生,將這名學生分成組進行游戲,則新加入的學生可以扮演的角色的種數為________.15.曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數=____。16.如圖,在三棱錐中,平面,,已知,,則當最大時,三棱錐的體積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱柱中,,是的中點,,.(1)求證:;(2)若側面為正方形,求直線與平面所成角的正弦值.18.(12分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.19.(12分)已知函數.(1)求不等式的解集;(2)若不等式對恒成立,求實數的取值范圍.20.(12分)如圖,在正四棱錐中,底面正方形的對角線交于點且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大小.21.(12分)已知函數,.(1)證明:函數的極小值點為1;(2)若函數在有兩個零點,證明:.22.(10分)某校為了解校園安全教育系列活動的成效,對全校學生進行一次安全意識測試,根據測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記分,“不合格”記分.現隨機抽取部分學生的成績,統(tǒng)計結果及對應的頻率分布直方圖如下所示:等級不合格合格得分頻數624(Ⅰ)若測試的同學中,分數段內女生的人數分別為,完成列聯表,并判斷:是否有以上的把握認為性別與安全意識有關?是否合格性別不合格合格總計男生女生總計(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中,共選取人進行座談,現再從這人中任選人,記所選人的量化總分為,求的分布列及數學期望;(Ⅲ)某評估機構以指標(,其中表示的方差)來評估該校安全教育活動的成效,若,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調整安全教育方案?附表及公式:,其中.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
列出每一步算法循環(huán),可得出輸出結果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點睛】本題考查算法與程序框圖的計算,解題時要根據算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.2、D【解析】
設,可得,構造()22,結合,可得,根據向量減法的模長不等式可得解.【詳解】設,則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運算綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.3、C【解析】
由可得,解得或,所以或,又,所以,故選C.4、B【解析】
根據題意,求得函數周期,利用周期性和函數值,即可求得.【詳解】由已知可知,,所以函數是一個以4為周期的周期函數,所以,解得,故選:B.【點睛】本題考查函數周期的求解,涉及對數運算,屬綜合基礎題.5、C【解析】
由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學生空間想象,數學運算能力,難度一般.6、A【解析】
根據分段函數直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數計算,意在考查學生的計算能力.7、A【解析】
模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當,,退出循環(huán),輸出結果.【詳解】程序運行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結果為,故選:A.【點睛】該題考查的是有關程序框圖的問題,涉及到的知識點有判斷程序框圖輸出結果,屬于基礎題目.8、B【解析】
根據程序框圖中的循環(huán)結構的運算,直至滿足條件退出循環(huán)體,即可得出結果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結構輸出結果,模擬程序運行是解題的關鍵,屬于基礎題.9、D【解析】
通過取特殊值逐項排除即可得到正確結果.【詳解】函數的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.10、D【解析】
根據題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設,分析的幾何意義,可得的最小值,據此分析選項即可得答案.【詳解】解:根據題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設,則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;
設,則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質以及應用,關鍵是對目標函數幾何意義的認識,屬于基礎題.11、A【解析】
設球心為O,三棱柱的上底面ΔA1B1C1的內切圓的圓心為O1,該圓與邊B【詳解】如圖,設三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設球心為O,則由球的幾何知識得ΔOO1M所以OM=2即球O的半徑為25所以球O的體積為43故選A.【點睛】本題考查與球有關的組合體的問題,解答本題的關鍵有兩個:(1)構造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內求出球的半徑,這是解決與球有關的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內切圓的半徑r=a+b-c12、C【解析】
先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據分步計數原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
根據約束條件畫出可行域,再把目標函數轉化為,對參數a分類討論,當時顯然不滿足題意;當時,直線經過可行域中的點A時,截距最小,即z有最小值,再由最小值為7,得出結果;當時,的截距沒有最小值,即z沒有最小值;當時,的截距沒有最大值,即z沒有最小值,綜上可得出結果.【詳解】根據約束條件畫出可行域如下:由,可得出交點,由可得,當時顯然不滿足題意;當即時,由可行域可知當直線經過可行域中的點A時,截距最小,即z有最小值,即,解得或(舍);當即時,由可行域可知的截距沒有最小值,即z沒有最小值;當即時,根據可行域可知的截距沒有最大值,即z沒有最小值.綜上可知滿足條件時.故答案為:3.【點睛】本題主要考查線性規(guī)劃問題,約束條件和目標函數中都有參數,要對參數進行討論.14、【解析】
對新加入的學生所扮演的角色進行分類討論,分析各種情況下個學生所扮演的角色的分組,綜合可得出結論.【詳解】依題意,名學生分成組,則一定是個人組和個人組.①若新加入的學生是士兵,則可以將這個人分組如下;名士兵;士兵、排長、連長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學生可以是士兵,由對稱性可知也可以是司令;②若新加入的學生是排長,則可以將這個人分組如下:名士兵;連長、營長、團長各名;旅長、師長、軍長各名;名司令;名排長.所以新加入的學生可以是排長,由對稱性可知也可以是軍長;③若新加入的學生是連長,則可以將這個人分組如下:名士兵;士兵、排長、連長各名;連長、營長、團長各名;旅長、師長、軍長各名;名司令.所以新加入的學生可以是連長,由對稱性可知也可以是師長;④若新加入的學生是營長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學生可以是營長,由對稱性可知也可以是旅長;⑤若新加入的學生是團長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;旅長、師長、軍長各名;名司令;名團長.所以新加入的學生可以是團長.綜上所述,新加入學生可以扮演種角色.故答案為:.【點睛】本題考查分類計數原理的應用,解答的關鍵就是對新加入的學生所扮演的角色進行分類討論,屬于中等題.15、或1【解析】
利用導數的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面積公式可得所求值.【詳解】的導數為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,,切線與的交點為,可得,解得或?!军c睛】本題主要考查利用導數求切線方程,以及直線方程的運用,三角形的面積求法。16、4【解析】設,則,,,,當且僅當,即時,等號成立.,故答案為4三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)取的中點,連接,,證明平面得出,再得出;(2)建立空間坐標系,求出平面的法向量,計算,即可得出答案.【詳解】(1)證明:取的中點,連接,,,,,,,故,又,,平面,平面,,,分別是,的中點,,.(2)解:四邊形是正方形,,又,,平面,平面,在平面內作直線的垂線,以為原點,以,,為所在直線為坐標軸建立空間直角坐標系,則,0,,,1,,,2,,,0,,,1,,,2,,,1,,設平面的法向量為,,,則,即,令可得:,,,,.直線與平面所成角的正弦值為,.【點睛】本題主要考查了線面垂直的判定與性質,考查空間向量與空間角的計算,屬于中檔題.18、(1)(2)不存在;詳見解析【解析】
(1)設,,,通過,即為的中點,轉化求解,點的軌跡的方程.(2)設直線的方程為,先根據,可得,①,再根據韋達定理,點在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決【詳解】(1)設,,則,,由題意知,所以為中點,由中點坐標公式得,即,又點在圓:上,故滿足,得.曲線的方程.(2)由題意知直線的斜率存在且不為零,設直線的方程為,因為,故,即①,聯立,消去得:,設,,,,,因為四邊形為平行四邊形,故,點在橢圓上,故,整理得②,將①代入②,得,該方程無解,故這樣的直線不存在.【點睛】本題考查點的軌跡方程的求法、滿足條件的點是否存在的判斷與直線方程的求法,考查數學轉化思想方法,是中檔題.19、(1)(2)【解析】
(1)按絕對值的定義分類討論去絕對值符號后解不等式;(2)不等式轉化為,求出在上的最小值即可,利用絕對值定義分類討論去絕對值符號后可求得函數最小值.【詳解】解:(1)或或解得或或無解綜上不等式的解集為.(2)時,,即所以只需在時恒成立即可令,由解析式得在上是增函數,∴當時,即【點睛】本題考查解絕對值不等式,考查不等式恒成立問題,解決絕對值不等式的問題,分類討論是常用方法.掌握分類討論思想是解題關鍵.20、(1);(2).【解析】
(1)以分別為軸,軸,軸,建立空間直角坐標系,設底面正方形邊長為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對角線交于點所以平面取的中點的中點所以兩兩垂直,故以點為坐標原點,以分別為軸,軸,軸,建立空間直角坐標系.設底面正方形邊長為因為所以所以,所以,設平面的法向量是,因為,,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設平面的法向量是,因為,,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.【點睛】本題主要考查了建立平面直角坐標系求解線面夾角以及二面角的問題,屬于中檔題.21、(1)見解析(2)見解析【解析】
(1)利用導函數的正負確定函數的增減.(2)函數在有兩個零點,即方程在區(qū)間有兩解,令通過二次求導確定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年堿錳電池合作協議書
- 小學一年級2025年秋季學期語文教學計劃
- 2025年企業(yè)公轉私借款合同(2篇)
- 2025年九年級第二學期思想品德教學工作總結(三篇)
- 2025年個人房屋買賣協議例文(五篇)
- 2025年買賣合同要式合同(2篇)
- 2025年代理委托貸款協議(2篇)
- 2025年九年級初三班主任的工作總結模版(二篇)
- 2025年二手房買賣購房合同樣本(三篇)
- 2025年個人私人借款合同標準版本(2篇)
- 外科手術及護理常規(guī)
- 學校開學教師安全培訓
- 出口潛力分析報告
- 大美陜西歡迎你-最全面的陜西省簡介課件
- 三位數減三位數的減法計算題 200道
- 米粉項目可行性研究報告
- 蛇年元宵節(jié)燈謎大全(附答案)
- 2023年上海中僑職業(yè)技術大學單招考試職業(yè)技能考試模擬試題及答案解析
- 中國教育公益領域發(fā)展報告
- 第2章第1節(jié)有機化學反應類型課件高二下學期化學魯科版選擇性必修3
- 生物質能利用原理與技術 - 第二章生物質能資源與植物
評論
0/150
提交評論