2025屆上海市徐匯區(qū)、金山區(qū)、松江區(qū)高三最后一模數(shù)學(xué)試題含解析_第1頁(yè)
2025屆上海市徐匯區(qū)、金山區(qū)、松江區(qū)高三最后一模數(shù)學(xué)試題含解析_第2頁(yè)
2025屆上海市徐匯區(qū)、金山區(qū)、松江區(qū)高三最后一模數(shù)學(xué)試題含解析_第3頁(yè)
2025屆上海市徐匯區(qū)、金山區(qū)、松江區(qū)高三最后一模數(shù)學(xué)試題含解析_第4頁(yè)
2025屆上海市徐匯區(qū)、金山區(qū)、松江區(qū)高三最后一模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆上海市徐匯區(qū)、金山區(qū)、松江區(qū)高三最后一模數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.2.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B3.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.74.設(shè)數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,,且,則()A.128 B.65 C.64 D.635.如圖,平面與平面相交于,,,點(diǎn),點(diǎn),則下列敘述錯(cuò)誤的是()A.直線(xiàn)與異面B.過(guò)只有唯一平面與平行C.過(guò)點(diǎn)只能作唯一平面與垂直D.過(guò)一定能作一平面與垂直6.函數(shù)的圖象為C,以下結(jié)論中正確的是()①圖象C關(guān)于直線(xiàn)對(duì)稱(chēng);②圖象C關(guān)于點(diǎn)對(duì)稱(chēng);③由y=2sin2x的圖象向右平移個(gè)單位長(zhǎng)度可以得到圖象C.A.① B.①② C.②③ D.①②③7.已知函數(shù),若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.8.已知定義在上的函數(shù)在區(qū)間上單調(diào)遞增,且的圖象關(guān)于對(duì)稱(chēng),若實(shí)數(shù)滿(mǎn)足,則的取值范圍是()A. B. C. D.9.給定下列四個(gè)命題:①若一個(gè)平面內(nèi)的兩條直線(xiàn)與另一個(gè)平面都平行,則這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面相互垂直;③垂直于同一直線(xiàn)的兩條直線(xiàn)相互平行;④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線(xiàn)不垂直的直線(xiàn)與另一個(gè)平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④10.函數(shù)在的圖象大致為()A. B.C. D.11.函數(shù)且的圖象是()A. B.C. D.12.已知雙曲線(xiàn)的右焦點(diǎn)為,若雙曲線(xiàn)的一條漸近線(xiàn)的傾斜角為,且點(diǎn)到該漸近線(xiàn)的距離為,則雙曲線(xiàn)的實(shí)軸的長(zhǎng)為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在四棱錐中,是邊長(zhǎng)為的正三角形,為矩形,,.若四棱錐的頂點(diǎn)均在球的球面上,則球的表面積為_(kāi)____.14.若實(shí)數(shù),滿(mǎn)足,則的最小值為_(kāi)_________.15.若正實(shí)數(shù)x,y,滿(mǎn)足x+2y=5,則x216.已知F為雙曲線(xiàn)的右焦點(diǎn),過(guò)F作C的漸近線(xiàn)的垂線(xiàn)FD,D為垂足,且(O為坐標(biāo)原點(diǎn)),則C的離心率為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓:()的左、右頂點(diǎn)分別為、,焦距為2,點(diǎn)為橢圓上異于、的點(diǎn),且直線(xiàn)和的斜率之積為.(1)求的方程;(2)設(shè)直線(xiàn)與軸的交點(diǎn)為,過(guò)坐標(biāo)原點(diǎn)作交橢圓于點(diǎn),試探究是否為定值,若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.18.(12分)已知等差數(shù)列的公差,且,,成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.19.(12分)已知拋物線(xiàn)的焦點(diǎn)為,直線(xiàn)交于兩點(diǎn)(異于坐標(biāo)原點(diǎn)O).(1)若直線(xiàn)過(guò)點(diǎn),,求的方程;(2)當(dāng)時(shí),判斷直線(xiàn)是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),說(shuō)明理由.20.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點(diǎn),是棱上的點(diǎn)且,,,.求證:平面平面以;求二面角的大小.21.(12分)在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.(1)求直線(xiàn)與曲線(xiàn)的普通方程,并求出直線(xiàn)的傾斜角;(2)記直線(xiàn)與軸的交點(diǎn)為是曲線(xiàn)上的動(dòng)點(diǎn),求點(diǎn)的最大距離.22.(10分)設(shè)的內(nèi)角、、的對(duì)邊長(zhǎng)分別為、、.設(shè)為的面積,滿(mǎn)足.(1)求;(2)若,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點(diǎn)睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計(jì)算它的體積即可.2、C【解析】試題分析:集合考點(diǎn):集合間的關(guān)系3、C【解析】

根據(jù)程序框圖程序運(yùn)算即可得.【詳解】依程序運(yùn)算可得:,故選:C【點(diǎn)睛】本題主要考查了程序框圖的計(jì)算,解題的關(guān)鍵是理解程序框圖運(yùn)行的過(guò)程.4、D【解析】

根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項(xiàng)和公式求.【詳解】因?yàn)?,所以,所以,所以?shù)列是等比數(shù)列,又因?yàn)椋裕?故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項(xiàng)和公式,還考查了運(yùn)算求解的能力,屬于中檔題.5、D【解析】

根據(jù)異面直線(xiàn)的判定定理、定義和性質(zhì),結(jié)合線(xiàn)面垂直的關(guān)系,對(duì)選項(xiàng)中的命題判斷.【詳解】A.假設(shè)直線(xiàn)與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線(xiàn)的性質(zhì)知,過(guò)只有唯一平面與平行,故正確.C.根據(jù)過(guò)一點(diǎn)有且只有一個(gè)平面與已知直線(xiàn)垂直知,故正確.D.根據(jù)異面直線(xiàn)的性質(zhì)知,過(guò)不一定能作一平面與垂直,故錯(cuò)誤.故選:D【點(diǎn)睛】本題主要考查異面直線(xiàn)的定義,性質(zhì)以及線(xiàn)面關(guān)系,還考查了理解辨析的能力,屬于中檔題.6、B【解析】

根據(jù)三角函數(shù)的對(duì)稱(chēng)軸、對(duì)稱(chēng)中心和圖象變換的知識(shí),判斷出正確的結(jié)論.【詳解】因?yàn)?,又,所以①正確.,所以②正確.將的圖象向右平移個(gè)單位長(zhǎng)度,得,所以③錯(cuò)誤.所以①②正確,③錯(cuò)誤.故選:B【點(diǎn)睛】本小題主要考查三角函數(shù)的對(duì)稱(chēng)軸、對(duì)稱(chēng)中心,考查三角函數(shù)圖象變換,屬于基礎(chǔ)題.7、C【解析】試題分析:由題意知,當(dāng)時(shí),由,當(dāng)且僅當(dāng)時(shí),即等號(hào)是成立,所以函數(shù)的最小值為,當(dāng)時(shí),為單調(diào)遞增函數(shù),所以,又因?yàn)椋沟?,即在的最小值不小于在上的最小值,即,解得,故選C.考點(diǎn):函數(shù)的綜合問(wèn)題.【方法點(diǎn)晴】本題主要考查了函數(shù)的綜合問(wèn)題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱(chēng)命題與存在命題的應(yīng)用等知識(shí)點(diǎn)的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問(wèn)題和解答問(wèn)題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.8、C【解析】

根據(jù)題意,由函數(shù)的圖象變換分析可得函數(shù)為偶函數(shù),又由函數(shù)在區(qū)間上單調(diào)遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度可得函數(shù)的圖象,由于函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),則函數(shù)的圖象關(guān)于軸對(duì)稱(chēng),即函數(shù)為偶函數(shù),由,得,函數(shù)在區(qū)間上單調(diào)遞增,則,得,解得.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性與奇偶性解不等式,注意分析函數(shù)的奇偶性,屬于中等題.9、D【解析】

利用線(xiàn)面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對(duì)四個(gè)命題分別分析進(jìn)行選擇.【詳解】當(dāng)兩個(gè)平面相交時(shí),一個(gè)平面內(nèi)的兩條直線(xiàn)也可以平行于另一個(gè)平面,故①錯(cuò)誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線(xiàn)的兩條直線(xiàn)還可以相交或者異面,故③錯(cuò)誤;若兩個(gè)平面垂直,只有在一個(gè)平面內(nèi)與它們的交線(xiàn)垂直的直線(xiàn)才與另一個(gè)平面垂直,故④正確.綜上,真命題是②④.故選:D【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線(xiàn)線(xiàn)、線(xiàn)面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查空間想象能力,是中檔題.10、C【解析】

先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項(xiàng);當(dāng)時(shí),,所以排除A選項(xiàng);當(dāng)時(shí),,排除D選項(xiàng);綜上可知,C為正確選項(xiàng),故選:C.【點(diǎn)睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.11、B【解析】

先判斷函數(shù)的奇偶性,再取特殊值,利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)分布情況,即可得解.【詳解】由題可知定義域?yàn)?,,是偶函?shù),關(guān)于軸對(duì)稱(chēng),排除C,D.又,,在必有零點(diǎn),排除A.故選:B.【點(diǎn)睛】本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質(zhì),屬于中檔題.12、B【解析】

雙曲線(xiàn)的漸近線(xiàn)方程為,由題可知.設(shè)點(diǎn),則點(diǎn)到直線(xiàn)的距離為,解得,所以,解得,所以雙曲線(xiàn)的實(shí)軸的長(zhǎng)為,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

做中點(diǎn),的中點(diǎn),連接,由已知條件可求出,運(yùn)用余弦定理可求,從而在平面中建立坐標(biāo)系,則以及的外接圓圓心為和長(zhǎng)方形的外接圓圓心為在該平面坐標(biāo)系的坐標(biāo)可求,通過(guò)球心滿(mǎn)足,即可求出的坐標(biāo),從而可求球的半徑,進(jìn)而能求出球的表面積.【詳解】解:如圖做中點(diǎn),的中點(diǎn),連接,由題意知,則設(shè)的外接圓圓心為,則在直線(xiàn)上且設(shè)長(zhǎng)方形的外接圓圓心為,則在上且.設(shè)外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標(biāo)原點(diǎn),以所在直線(xiàn)為軸,以過(guò)點(diǎn)垂直于軸的直線(xiàn)為軸,如圖建立坐標(biāo)系,由題意知,在平面中且設(shè),則,因?yàn)?,所以解?則所以球的表面積為.故答案為:.【點(diǎn)睛】本題考查了幾何體外接球的問(wèn)題,考查了球的表面積.關(guān)于幾何體的外接球的做題思路有:一是通過(guò)將幾何體補(bǔ)充到長(zhǎng)方體中,將幾何體的外接球等同于長(zhǎng)方體的外接球,求出體對(duì)角線(xiàn)即為直徑,但這種方法適用性較差;二是通過(guò)球的球心與各面外接圓圓心的連線(xiàn)與該平面垂直,設(shè)半徑列方程求解;三是通過(guò)空間、平面坐標(biāo)系進(jìn)行求解.14、【解析】

由約束條件先畫(huà)出可行域,然后求目標(biāo)函數(shù)的最小值.【詳解】由約束條件先畫(huà)出可行域,如圖所示,由,即,當(dāng)平行線(xiàn)經(jīng)過(guò)點(diǎn)時(shí)取到最小值,由可得,此時(shí),所以的最小值為.故答案為.【點(diǎn)睛】本題考查了線(xiàn)性規(guī)劃的知識(shí),解題的一般步驟為先畫(huà)出可行域,然后改寫(xiě)目標(biāo)函數(shù),結(jié)合圖形求出最值,需要掌握解題方法.15、8【解析】

分析:將題中的式子進(jìn)行整理,將x+1當(dāng)做一個(gè)整體,之后應(yīng)用已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問(wèn)題的求解方法,即可求得結(jié)果.詳解:x2-3x+1+2點(diǎn)睛:該題屬于應(yīng)用基本不等式求最值的問(wèn)題,解決該題的關(guān)鍵是需要對(duì)式子進(jìn)行化簡(jiǎn),轉(zhuǎn)化,利用整體思維,最后注意此類(lèi)問(wèn)題的求解方法-------相乘,即可得結(jié)果.16、2【解析】

求出焦點(diǎn)到漸近線(xiàn)的距離就可得到的等式,從而可求得離心率.【詳解】由題意,一條漸近線(xiàn)方程為,即,∴,由得,∴,,∴.故答案為:2.【點(diǎn)睛】本題考查求雙曲線(xiàn)的離心率,解題關(guān)鍵是求出焦點(diǎn)到漸近線(xiàn)的距離,從而得出一個(gè)關(guān)于的等式.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)是定值,且定值為2【解析】

(1)設(shè)出點(diǎn)坐標(biāo)并代入橢圓方程,根據(jù)列方程,求得的值,結(jié)合求得的值,進(jìn)而求得橢圓的方程.(2)設(shè)出直線(xiàn)的方程,聯(lián)立直線(xiàn)的方程和橢圓方程,求得點(diǎn)的橫坐標(biāo),聯(lián)立直線(xiàn)的方程和橢圓方程,求得,由此化簡(jiǎn)求得為定值.【詳解】(1)已知點(diǎn)在橢圓:()上,可設(shè),即,又,且,可得橢圓的方程為.(2)設(shè)直線(xiàn)的方程為:,則直線(xiàn)的方程為.聯(lián)立直線(xiàn)與橢圓的方程可得:,由,可得,聯(lián)立直線(xiàn)與橢圓的方程可得:,即,即.即為定值,且定值為2.【點(diǎn)睛】本小題主要考查本小題主要考查橢圓方程的求法,考查橢圓中的定值問(wèn)題的求解,考查直線(xiàn)和橢圓的位置關(guān)系,考查運(yùn)算求解能力,屬于中檔題.18、(1);(2).【解析】

(1)根據(jù)等比中項(xiàng)性質(zhì)可構(gòu)造方程求得,由等差數(shù)列通項(xiàng)公式可求得結(jié)果;(2)由(1)可得,可知為等比數(shù)列,利用分組求和法,結(jié)合等差和等比數(shù)列求和公式可求得結(jié)果.【詳解】(1)成等比數(shù)列,,即,,解得:,.(2)由(1)得:,,,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式的求解、分組求和法求解數(shù)列的前項(xiàng)和的問(wèn)題;關(guān)鍵是能夠根據(jù)通項(xiàng)公式證得數(shù)列為等比數(shù)列,進(jìn)而采用分組求和法,結(jié)合等差和等比數(shù)列求和公式求得結(jié)果.19、(1)(2)直線(xiàn)過(guò)定點(diǎn)【解析】

設(shè).(1)由題意知,.設(shè)直線(xiàn)的方程為,由得,則,由根與系數(shù)的關(guān)系可得,所以.由,得,解得.所以?huà)佄锞€(xiàn)的方程為.(2)設(shè)直線(xiàn)的方程為,由得,由根與系數(shù)的關(guān)系可得,所以,解得.所以直線(xiàn)的方程為,所以時(shí),直線(xiàn)過(guò)定點(diǎn).20、證明見(jiàn)解析;.【解析】

推導(dǎo)出,,從而平面,由此證明平面平面以;以為原點(diǎn),建立空間直角坐標(biāo)系,利用法向量求出二面角的大小.【詳解】解:,,為的中點(diǎn),四邊形為平行四邊形,.,,即.又平面平面,且平面平面,平面.平面,平面平面.,為的中點(diǎn),.平面平面,且平面平面,平面.如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,則平面的一個(gè)法向量為,,,,,設(shè),則,,,,,在平面中,,,設(shè)平面的法向量為,則,即,平面的一個(gè)法向量為,,由圖知二面角為銳角,所以所求二面角大小為.【點(diǎn)睛】本題考查面面垂直的證明,考查二面角的大小的求法,考查了空間向量的應(yīng)用,屬于中檔題.21、(1),,直線(xiàn)的傾斜角為(2)【解析】

(1)由公式消去參數(shù)得普通方程,由公式可得直角坐標(biāo)方程后可得傾斜角;(2)求出直線(xiàn)與軸交點(diǎn),用參數(shù)表示點(diǎn)坐標(biāo),求出,利用三角函數(shù)的性質(zhì)可得最大值.【詳解】(1)由,消去得的普通方程是:由,得,將代入上式,化簡(jiǎn)得直線(xiàn)的傾斜角為(2)在曲線(xiàn)上任取一點(diǎn),直線(xiàn)與軸的交點(diǎn)的坐標(biāo)為則當(dāng)且僅當(dāng)時(shí),取最大值.【點(diǎn)睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標(biāo)方程與直角坐

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論