2023年自然語(yǔ)言處理算法魯棒性研究思考報(bào)告_第1頁(yè)
2023年自然語(yǔ)言處理算法魯棒性研究思考報(bào)告_第2頁(yè)
2023年自然語(yǔ)言處理算法魯棒性研究思考報(bào)告_第3頁(yè)
2023年自然語(yǔ)言處理算法魯棒性研究思考報(bào)告_第4頁(yè)
2023年自然語(yǔ)言處理算法魯棒性研究思考報(bào)告_第5頁(yè)
已閱讀5頁(yè),還剩145頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

00各類自然語(yǔ)言處理算法快速發(fā)展,在很多任務(wù)上甚至超越人類00各類自然語(yǔ)言處理算法快速發(fā)展,在很多任務(wù)上甚至超越人類4400算法在實(shí)際應(yīng)用中的效果卻不盡如人意00算法在實(shí)際應(yīng)用中的效果卻不盡如人意00不經(jīng)過(guò)魯棒性評(píng)估會(huì)面臨巨大風(fēng)險(xiǎn)7700模型對(duì)測(cè)試數(shù)據(jù)的微小變化非常敏感9900模型對(duì)測(cè)試數(shù)據(jù)的微小變化非常敏感00模型對(duì)測(cè)試數(shù)據(jù)的微小變化非常敏感00為什么會(huì)這樣?問(wèn)題1:為什么基于基準(zhǔn)測(cè)試集合和常用評(píng)價(jià)指標(biāo)的模式不能反映上述問(wèn)題?問(wèn)題2:深度神經(jīng)網(wǎng)絡(luò)模型到底學(xué)習(xí)到了什么?問(wèn)題3:現(xiàn)階段自然語(yǔ)言處理算法魯棒性究竟怎么樣?00為什么會(huì)這樣?問(wèn)題1:為什么基于基準(zhǔn)測(cè)試集合和常用評(píng)價(jià)指標(biāo)的模式不能反映上述問(wèn)題?問(wèn)題2:深度神經(jīng)網(wǎng)絡(luò)模型到底學(xué)習(xí)到了什么?問(wèn)題3:現(xiàn)階段自然語(yǔ)言處理算法魯棒性究竟怎么樣?11數(shù)據(jù)集上存在偏置–WINOGRANDEHaveneurallanguagemoverestimatingthetruecapabilitiesofmachinecommonsense?11數(shù)據(jù)集上存在偏置–WINOGRANDE11數(shù)據(jù)集上存在偏置–WINOGRANDE1.RoBERTafine-tunedonasmallsubsetofthedataset.2.Anensembleoflinearclassifiers(logisticregressions)3.Trainedonrandomsubsetsofthedata4.Determinewhethertherepresentationisstronglyindicativeofthecorrectansweroption5.Discardthecorrespondinginstances11數(shù)據(jù)集上存在偏置–WINOGRANDE11數(shù)據(jù)集上存在偏置–WINOGRANDEFuetal.,RethinkingGeneralizationofNeuralModels:ANamedEntityRecognitionCaseStudy,AAAI2020Liuetal.,EXPLAINABOARD:AnExplainableLeaderboard1.基準(zhǔn)集合構(gòu)建時(shí)通常存在數(shù)據(jù)偏置2.粗粒度的評(píng)測(cè)指標(biāo)不能夠全面反映模型特性00為什么會(huì)這樣?問(wèn)題1:為什么基于基準(zhǔn)測(cè)試集合和常用評(píng)價(jià)指標(biāo)的模式不能反映上述問(wèn)題?問(wèn)題2:深度神經(jīng)網(wǎng)絡(luò)模型到底學(xué)習(xí)到了什么?問(wèn)題3:現(xiàn)階段自然語(yǔ)言處理算法魯棒性究竟怎么樣?Sundararajanetal.,Axiomaticattributionfordeepnetworks.2017基于Bert的用戶檢索詞---文章語(yǔ)義匹配模型AttentionheadsexhibitingpatternsAttentionheadscorrespondingtolinguisticphenomenaThebestperformingattentionsheadsofBERTonWSJdependencyparsingoftenexhibitingsimilarCertainattentionheadscorreAttention-basedprobingclassifierdemonstratedthatsubstantialsyntacticinformationcoulHowupweightingaparticulartrainingexample(xi,yi)intheHowthischangeinthemodelparameterswouldtrainingset{(x1,y1),…,((xn,yn)}byε!wouldchangetheinturnaffectthelossofthetestinputlearnedmodelparametersθHanetal.,Explainingblackboxpredictionsandunveiling00問(wèn)題2:深度神經(jīng)網(wǎng)絡(luò)模型到底學(xué)習(xí)到了什么?非常初步的猜想,大規(guī)模數(shù)據(jù)分析和實(shí)驗(yàn)中3.預(yù)訓(xùn)練語(yǔ)言模型學(xué)習(xí)到了部分復(fù)述(paraphrase)的相似表示覆蓋了人工構(gòu)造的基礎(chǔ)特征,以及人工很難構(gòu)造的特征高階綜合00為什么會(huì)這樣?問(wèn)題1:為什么基于基準(zhǔn)測(cè)試集合和常用評(píng)價(jià)指標(biāo)的模式不能反映上述問(wèn)題?問(wèn)題2:深度神經(jīng)網(wǎng)絡(luò)模型到底學(xué)習(xí)到了什么?問(wèn)題3:現(xiàn)階段自然語(yǔ)言處理算法魯棒性究竟怎么樣?Hauseretal.,BERTisRobust!ACaseAgainstSynonym-BasedAdversarialExamplesinTextClassificatiSietal.,BenchmarkingRobustneSietal.,BenchmarkingRobustnessofMachineReadingCompr….@AmericanAirservicewas完備性-20種通用變形、60種任務(wù)特有變形、數(shù)千種變形組合可接受-所有變形基于語(yǔ)言學(xué)知識(shí)分析功能-對(duì)評(píng)測(cè)結(jié)果給出可視化分析報(bào)告“HelovesNLP”istransformedint拼寫錯(cuò)誤反義詞“HewasborninChina”“HewasborninLlanfairpwllgwyngyllgogeryc看“看看,”“看一看,”“看了看,”and“看了一看.”“Thereisanappleonthedesk”“Thereisanimponderableonthedesk”原始集合Shebecameanurseandworkedinahospital.ItoldJohntocomeearly,buthefailed.TheriverderivesfromsouthernAmerica.Marrywouldliketoteachkidsinthekindergarten.Thestormdestroyedmanyhousesinthevillage.√√√?Plausibility(Lambertetal.,2010)measureswhetherthetextisreasonableandwrittenbynativespeakers.Sentencesordocumentsthatarenatural,appropriate,logicallycorrect,andmeaningfulinthecontextwillreceiveahigherplausibilityscore.Textsthatarelogicallyorsemanticallyinconsistentorcontaininappropriatevocabularywillreceivealowerplausibilityscore.?Grammaticality(Newmeyer,1983)measureswhetherthetextcontainssyntaxerrors.Itreferstotheconformityofthetexttotherulesdefinedbythespecificgrammarofalanguage.Gui,Tao,etal."Textflint:UnifiedmultilingualrobustnessevaluationtoELMO+BiLSTM+CRFBert+BiLSTM+CRFUANETS-LSTM meta-taggerLM-LSTM-CRFBILSTM-LAN BiLSTM-aux CRF++CNN+BiLSTM+CRF xlnet-large-cased xlnet-base-cased roberta-largeroberta-basebert-large-uncasedbert-base-uncased albert-xxlarge-v2albert-base-v2Match-lstm LCF-BERTBERT-SPCBERT-BASEAEN-BERTTNetTD-LSTM MGANLSTMATAE-LSTMMemNetAEN-GloveParadigmaticRelationMorphologySyntaxPragmaticsParadigmaticRelationMorphologyABSAABSAContractionKeyboardOcrSpellingErrorTyposWordCase-lowerWordCase-titleWordCase-upperInsertAdvSwapNamedEntAddPuncAppendIrrTwitterTypeMLMSuggestionSwapNumSwapSyn-WordNetContractionKeyboardOcrSpellingErrorTyposWordCase-lowerWordCase-titleWordCase-upperInsertAdvSwapNamedEntAddPuncAppendIrrTwitterTypeMLMSuggestionSwapNumSwapSyn-WordNetSwapSyn-WordEmbeddingSwapSyn-WordEmbeddingMRC-SQuAD2.0MRC-SQuAD1.1SM-qqpSM-mrpcNLI-SNLINLI-MNLI-mmNLI-MNLI-mCOREF-OntonotesABSA-SemEval2014-RestaurantABSA-SemEval2014-LaptopSA-Yelp-BinarySA-IMDBDP-PTBPOS-WSJParadigmaticRelationMorphologySyntaxPragmaticsParadigmaticRelationMorphologyContractionKeyboardOcrSpellingErrorWordCase-lowerWordCase-titleWordCase-upperInsertAdvSwapNamedEntAddPuncAppendIrrTwitterTypeMLMSuggestionSwapNumSwapSyn-WordEmbeddingSwapSyn-WordNetContractionKeyboardOcrSpellingErrorWordCase-lowerWordCase-titleWordCase-upperInsertAdvSwapNamedEntAddPuncAppendIrrTwitterTypeMLMSuggestionSwapNumSwapSyn-WordEmbeddingSwapSyn-WordNetGlobalSemanticsGlobalSemanti

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論