




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆貴州省鳳岡縣第二中學(xué)高考數(shù)學(xué)全真模擬密押卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.2.設(shè)x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②3.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.4.設(shè)過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關(guān)于軸對稱,為坐標(biāo)原點,若,且,則點的軌跡方程是()A. B.C. D.5.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.6.的展開式中的常數(shù)項為()A.-60 B.240 C.-80 D.1807.在三棱錐中,,且分別是棱,的中點,下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④8.下列幾何體的三視圖中,恰好有兩個視圖相同的幾何體是()A.正方體 B.球體C.圓錐 D.長寬高互不相等的長方體9.已知集合,若,則實數(shù)的取值范圍為()A. B. C. D.10.在各項均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.511.?dāng)?shù)列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項的和S100=()A.132 B.299 C.68 D.9912.國家統(tǒng)計局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數(shù)為49.4%D.12個月的PMI值的中位數(shù)為50.3%二、填空題:本題共4小題,每小題5分,共20分。13.若展開式中的常數(shù)項為240,則實數(shù)的值為________.14.已知在等差數(shù)列中,,,前n項和為,則________.15.已知函數(shù)的圖象在處的切線斜率為,則______.16.已知雙曲線的一條漸近線經(jīng)過點,則該雙曲線的離心率為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.18.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當(dāng)時,證明:對;(2)若函數(shù)在上存在極值,求實數(shù)的取值范圍。19.(12分)是數(shù)列的前項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列中最小的項.20.(12分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費時費力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時間(天)與人數(shù)的頻數(shù)分布表:時間人數(shù)156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).列聯(lián)表如下流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天辦理社保手續(xù)所需時間超過4天60總計21090300(2)為了改進(jìn)工作作風(fēng),提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87921.(12分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點Q為AE的中點.(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.22.(10分)網(wǎng)絡(luò)看病就是國內(nèi)或者國外的單個人、多個人或者單位通過國際互聯(lián)網(wǎng)或者其他局域網(wǎng)對自我、他人或者某種生物的生理疾病或者機器故障進(jìn)行查找詢問、診斷治療、檢查修復(fù)的一種新興的看病方式.因此,實地看病與網(wǎng)絡(luò)看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機構(gòu)調(diào)研了患者對網(wǎng)絡(luò)看病,實地看病的滿意程度,在每種看病方式的患者中各隨機抽取15名,將他們分成兩組,每組15人,分別對網(wǎng)絡(luò)看病,實地看病兩種方式進(jìn)行滿意度測評,根據(jù)患者的評分(滿分100分)繪制了如圖所示的莖葉圖:(1)根據(jù)莖葉圖判斷患者對于網(wǎng)絡(luò)看病、實地看病那種方式的滿意度更高?并說明理由;(2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:滿意不滿意總計網(wǎng)絡(luò)看病實地看病總計并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為患者看病滿意度與看病方式有關(guān)?(3)從網(wǎng)絡(luò)看病的評價“滿意”的人中隨機抽取2人,求這2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
首先由三視圖還原幾何體,進(jìn)一步求出幾何體的棱長.【詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【點睛】本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎(chǔ)題.2、C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側(cè)面時.【詳解】①當(dāng)直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側(cè)面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進(jìn)行排除,屬于簡單題目.3、C【解析】
在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.4、A【解析】
設(shè)坐標(biāo),根據(jù)向量坐標(biāo)運算表示出,從而可利用表示出;由坐標(biāo)運算表示出,代入整理可得所求的軌跡方程.【詳解】設(shè),,其中,,即關(guān)于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標(biāo)運算、數(shù)量積運算;關(guān)鍵是利用動點坐標(biāo)表示出變量,根據(jù)平面向量數(shù)量積的坐標(biāo)運算可整理得軌跡方程.5、C【解析】
求出導(dǎo)函數(shù),由有不等的兩實根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.6、D【解析】
求的展開式中的常數(shù)項,可轉(zhuǎn)化為求展開式中的常數(shù)項和項,再求和即可得出答案.【詳解】由題意,中常數(shù)項為,中項為,所以的展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查二項式定理的應(yīng)用和二項式展開式的通項公式,考查學(xué)生計算能力,屬于基礎(chǔ)題.7、D【解析】
①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當(dāng)平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.8、C【解析】
根據(jù)基本幾何體的三視圖確定.【詳解】正方體的三個三視圖都是相等的正方形,球的三個三視圖都是相等的圓,圓錐的三個三視圖有一個是圓,另外兩個是全等的等腰三角形,長寬高互不相等的長方體的三視圖是三個兩兩不全等的矩形.故選:C.【點睛】本題考查基本幾何體的三視圖,掌握基本幾何體的三視圖是解題關(guān)鍵.9、A【解析】
解一元二次不等式化簡集合的表示,求解函數(shù)的定義域化簡集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進(jìn)行求解即可.【詳解】,.因為,所以有,因此有.故選:A【點睛】本題考查了已知集合運算的結(jié)果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運算能力.10、D【解析】
由對數(shù)運算法則和等比數(shù)列的性質(zhì)計算.【詳解】由題意.故選:D.【點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則.掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.11、B【解析】
由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對任意的,均有為定值,,故,是以3為周期的數(shù)列,故,.故選:.【點睛】本題考查周期數(shù)列求和,屬于中檔題.12、D【解析】
根據(jù)圖形中的信息,可得頻率、平均值的估計、眾數(shù)、中位數(shù),從而得到答案.【詳解】對A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數(shù)為49.4%,故C正確,;對D,12個月的PMI值的中位數(shù)為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數(shù)、中位數(shù)計算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-3【解析】
依題意可得二項式展開式的常數(shù)項為即可得到方程,解得即可;【詳解】解:∵二項式的展開式中的常數(shù)項為,∴解得.故答案為:【點睛】本題考查二項式展開式中常數(shù)項的計算,屬于基礎(chǔ)題.14、39【解析】
設(shè)等差數(shù)列公差為d,首項為,再利用基本量法列式求解公差與首項,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列公差為d,首項為,根據(jù)題意可得,解得,所以.故答案為:39【點睛】本題考查等差數(shù)列的基本量計算以及前n項和的公式,屬于基礎(chǔ)題.15、【解析】
先對函數(shù)f(x)求導(dǎo),再根據(jù)圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點睛】本題考查了根據(jù)曲線上在某點切線方程的斜率求參數(shù)的問題,屬于基礎(chǔ)題.16、【解析】
根據(jù)雙曲線方程,可得漸近線方程,結(jié)合題意可表示,再由雙曲線a,b,c關(guān)系表示,最后結(jié)合雙曲線離心率公式計算得答案.【詳解】因為雙曲線為,所以該雙曲線的漸近線方程為.又因為其一條漸近線經(jīng)過點,即,則,由此可得.故答案為:.【點睛】本題考查由雙曲線的漸近線構(gòu)建方程表示系數(shù)關(guān)系進(jìn)而求離心率,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)令可求得的值,令時,由可得出,兩式相減可得的表達(dá)式,然后對是否滿足在時的表達(dá)式進(jìn)行檢驗,由此可得出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,對分奇數(shù)和偶數(shù)兩種情況討論,利用奇偶分組求和法結(jié)合等差數(shù)列和等比數(shù)列的求和公式可求得結(jié)果.【詳解】(1),當(dāng)時,;當(dāng)時,由得,兩式相減得,.滿足.因此,數(shù)列的通項公式為;(2).①當(dāng)為奇數(shù)時,;②當(dāng)為偶數(shù)時,.綜上所述,.【點睛】本題考查數(shù)列通項的求解,同時也考查了奇偶分組求和法,考查計算能力,屬于中等題.18、(1)見證明;(2)【解析】
(1)利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對a分類討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點存在定理說明函數(shù)存在極值.【詳解】(1)當(dāng)時,,于是,.又因為,當(dāng)時,且.故當(dāng)時,,即.所以,函數(shù)為上的增函數(shù),于是,.因此,對,;(2)方法一:由題意在上存在極值,則在上存在零點,①當(dāng)時,為上的增函數(shù),注意到,,所以,存在唯一實數(shù),使得成立.于是,當(dāng)時,,為上的減函數(shù);當(dāng)時,,為上的增函數(shù);所以為函數(shù)的極小值點;②當(dāng)時,在上成立,所以在上單調(diào)遞增,所以在上沒有極值;③當(dāng)時,在上成立,所以在上單調(diào)遞減,所以在上沒有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數(shù)在上存在極值,則在上存在零點.即在上存在零點.設(shè),,則由單調(diào)性的性質(zhì)可得為上的減函數(shù).即的值域為,所以,當(dāng)實數(shù)時,在上存在零點.下面證明,當(dāng)時,函數(shù)在上存在極值.事實上,當(dāng)時,為上的增函數(shù),注意到,,所以,存在唯一實數(shù),使得成立.于是,當(dāng)時,,為上的減函數(shù);當(dāng)時,,為上的增函數(shù);即為函數(shù)的極小值點.綜上所述,當(dāng)時,函數(shù)在上存在極值.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,涉及函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值的求法,考查構(gòu)造法的應(yīng)用,是一道綜合題.19、(1);(2).【解析】
(1)由可得出,兩式作差可求得數(shù)列的通項公式;(2)求得,利用數(shù)列的單調(diào)性的定義判斷數(shù)列的單調(diào)性,由此可求得數(shù)列的最小項的值.【詳解】(1)對任意的,由得,兩式相減得,因此,數(shù)列的通項公式為;(2)由(1)得,則.當(dāng)時,,即,;當(dāng)時,,即,.所以,數(shù)列的最小項為.【點睛】本題考查利用與的關(guān)系求通項,同時也考查了利用數(shù)列的單調(diào)性求數(shù)列中的最小項,考查推理能力與計算能力,屬于中等題.20、(1)列聯(lián)表見解析,有;(2)分布列見解析,.【解析】
(1)根據(jù)題意,結(jié)合已知數(shù)據(jù)即可填寫列聯(lián)表,計算出的觀測值,即可進(jìn)行判斷;(2)先計算出時間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計算公式求得分布列,結(jié)合分布列即可求得數(shù)學(xué)期望.【詳解】(1)因為樣本數(shù)據(jù)中有流動人員210人,非流動人員90人,所以辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表如下:辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天453075辦理社保手續(xù)所需時間超過4天16560225總計21090300結(jié)合列聯(lián)表可算得.有95%的把握認(rèn)為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).(2)根據(jù)分層抽樣可知時間在可選9人,時間在可以選3名,故,則,,,,可知分布列為0123可知.【點睛】本題考查獨立性檢驗中的計算,以及離散型隨機變量的分布列以及數(shù)學(xué)期望,涉及分層抽樣,屬綜合性中檔題.21、(1)見解析(2)【解析】
(1)連接交于點,連接,通過證明,證得平面.(2)建立空間直角坐標(biāo)系,利用直線的方向向量和平面的法向量,計算出線面角的正弦值.【詳解】(1)證明:連接交于點,連接,因為四邊形為正方形,所以點為的中點,又因為為的中點,所以;平面平面,平面.(2)解:,設(shè),則,在中,,由余弦定理得:,.又,平面..平面.如圖建立的空間直角坐標(biāo)系.在等腰梯形中,可得.則.那么設(shè)平面的法向量為,則有,即,取,得.設(shè)與平面所成的角為,則.所以與平面所成角的正弦值為.【點睛】本小題主要考查線面平行的證明,考查線面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.22、(1)實地看病的滿意度更高,理由見解析;(2)列聯(lián)表見解析,有;(3).【解析】
(1)對實地看病滿意度更高,可以從莖葉圖四個方面選一個回答即可;(2)先完成列聯(lián)表,再由獨立性檢
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土木工程現(xiàn)代化建設(shè)探索試題及答案
- 2025年政策變化影響創(chuàng)業(yè)者的因素試題及答案
- 2025年商務(wù)英語考試模擬試卷試題及答案
- 2025年大學(xué)物理考試的復(fù)雜系統(tǒng)分析題目及答案
- 商務(wù)談判的語言藝術(shù)能力測試試題及答案
- 中國花插行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告2025-2028版
- 中國自動送砂炒貨機行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告2025-2028版
- 2025年大學(xué)物理考試粒子加速與質(zhì)量試題及答案
- 2025年建筑施工安全事故應(yīng)急處理試題及答案
- 2025年樂理考試難點講解及實例試題及答案
- FZ/T 24011-2019羊絨機織圍巾、披肩
- 金螳螂企業(yè)管理課件
- 炊事機械安全操作規(guī)程
- 最新版教育心理學(xué)課件3-成就動機
- 《大數(shù)據(jù)環(huán)境下的網(wǎng)絡(luò)安全問題探討(論文)8000字》
- 離合器-汽車畢業(yè)設(shè)計-設(shè)計說明書
- 中國民間美術(shù)年畫-完整版PPT
- 2022年《趣味接力跑》教案
- 級配碎石旁站監(jiān)理記錄表.模板
- 國電南自PSL 641U線路保護(hù)測控裝置技術(shù)說明書V1.1
- 常暗之廂(7規(guī)則-簡體修正)
評論
0/150
提交評論