紹興文理學(xué)院元培學(xué)院《中外經(jīng)典紋樣與圖形》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁(yè)
紹興文理學(xué)院元培學(xué)院《中外經(jīng)典紋樣與圖形》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁(yè)
紹興文理學(xué)院元培學(xué)院《中外經(jīng)典紋樣與圖形》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁(yè)
紹興文理學(xué)院元培學(xué)院《中外經(jīng)典紋樣與圖形》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁(yè)
紹興文理學(xué)院元培學(xué)院《中外經(jīng)典紋樣與圖形》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)紹興文理學(xué)院元培學(xué)院

《中外經(jīng)典紋樣與圖形》2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的目標(biāo)檢測(cè)中,對(duì)于小目標(biāo)的檢測(cè)往往具有較大的挑戰(zhàn)性。為了提高小目標(biāo)檢測(cè)的準(zhǔn)確率,以下哪種策略可能是有效的?()A.多尺度特征融合B.增加訓(xùn)練數(shù)據(jù)中的小目標(biāo)樣本C.使用更高分辨率的輸入圖像D.以上都是2、在計(jì)算機(jī)視覺的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要對(duì)一張受到嚴(yán)重噪聲污染的圖像進(jìn)行去噪處理,以下關(guān)于圖像去噪方法的描述,正確的是:()A.均值濾波方法能夠在去除噪聲的同時(shí)很好地保留圖像的細(xì)節(jié)B.中值濾波對(duì)椒鹽噪聲的去除效果不佳C.基于深度學(xué)習(xí)的圖像去噪方法可以自適應(yīng)地學(xué)習(xí)噪聲模式和圖像特征D.圖像去噪不會(huì)引入任何新的失真或模糊3、物體檢測(cè)是計(jì)算機(jī)視覺中的一項(xiàng)關(guān)鍵任務(wù)。假設(shè)一個(gè)智能監(jiān)控系統(tǒng)需要檢測(cè)場(chǎng)景中的特定物體,如背包、自行車等。以下關(guān)于物體檢測(cè)算法的描述,哪一項(xiàng)是不正確的?()A.基于深度學(xué)習(xí)的物體檢測(cè)算法能夠同時(shí)檢測(cè)多個(gè)物體,并給出它們的位置和類別B.可以通過滑動(dòng)窗口的方法在圖像中搜索可能的物體區(qū)域,然后進(jìn)行分類判斷C.物體檢測(cè)算法需要對(duì)大量的標(biāo)注圖像進(jìn)行訓(xùn)練,以學(xué)習(xí)不同物體的特征D.無論物體的大小、形狀和顏色如何變化,物體檢測(cè)算法都能準(zhǔn)確檢測(cè)到4、計(jì)算機(jī)視覺在工業(yè)檢測(cè)中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)要檢測(cè)生產(chǎn)線上的零件是否存在缺陷,以下關(guān)于工業(yè)檢測(cè)中的計(jì)算機(jī)視覺應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以使用機(jī)器視覺系統(tǒng)對(duì)零件進(jìn)行實(shí)時(shí)檢測(cè),快速發(fā)現(xiàn)缺陷B.深度學(xué)習(xí)模型能夠自動(dòng)學(xué)習(xí)正常零件和缺陷零件的特征差異,實(shí)現(xiàn)準(zhǔn)確的缺陷檢測(cè)C.工業(yè)檢測(cè)中的計(jì)算機(jī)視覺系統(tǒng)需要具備高度的準(zhǔn)確性和穩(wěn)定性,能夠適應(yīng)不同的生產(chǎn)環(huán)境D.計(jì)算機(jī)視覺在工業(yè)檢測(cè)中只能檢測(cè)外觀缺陷,對(duì)于零件的內(nèi)部結(jié)構(gòu)和性能無法進(jìn)行評(píng)估5、計(jì)算機(jī)視覺在文物保護(hù)和修復(fù)中的應(yīng)用逐漸增多。假設(shè)要對(duì)一幅古老的繪畫進(jìn)行數(shù)字化修復(fù)和增強(qiáng),以下關(guān)于顏色恢復(fù)的挑戰(zhàn),哪一項(xiàng)是最為顯著的?()A.由于年代久遠(yuǎn),原畫作的顏色信息缺失嚴(yán)重B.不同區(qū)域的顏色褪色程度不一致,難以統(tǒng)一恢復(fù)C.缺乏對(duì)原畫作創(chuàng)作時(shí)所用顏料的了解,難以準(zhǔn)確還原顏色D.修復(fù)過程中可能引入新的顏色偏差,影響修復(fù)效果6、在計(jì)算機(jī)視覺的圖像修復(fù)任務(wù)中,假設(shè)要修復(fù)一張有部分缺失的圖像。以下關(guān)于圖像修復(fù)方法的描述,正確的是:()A.基于擴(kuò)散的圖像修復(fù)方法能夠自然地填充缺失區(qū)域,但修復(fù)速度慢B.基于樣本的圖像修復(fù)方法可以快速生成修復(fù)結(jié)果,但容易出現(xiàn)重復(fù)紋理C.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像修復(fù)中無法保證修復(fù)內(nèi)容與周圍區(qū)域的一致性D.所有的圖像修復(fù)方法都能夠完美地恢復(fù)出圖像缺失部分的真實(shí)內(nèi)容7、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項(xiàng)是不太恰當(dāng)?shù)??()A.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運(yùn)用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場(chǎng)景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動(dòng)學(xué)習(xí)場(chǎng)景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場(chǎng)景理解模型8、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,假設(shè)要生成具有真實(shí)感的自然圖像。以下關(guān)于圖像生成方法的描述,正確的是:()A.生成對(duì)抗網(wǎng)絡(luò)(GAN)能夠生成逼真的圖像,但訓(xùn)練過程不穩(wěn)定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實(shí)感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質(zhì)量的圖像D.所有的圖像生成方法都能夠生成與真實(shí)世界完全一致的圖像9、在計(jì)算機(jī)視覺中,圖像增強(qiáng)技術(shù)用于改善圖像的質(zhì)量。以下關(guān)于圖像增強(qiáng)的描述,不正確的是()A.圖像增強(qiáng)可以包括對(duì)比度增強(qiáng)、銳化、去噪等操作B.圖像增強(qiáng)的目的是使圖像更適合人類視覺觀察或后續(xù)的處理任務(wù)C.過度的圖像增強(qiáng)可能會(huì)導(dǎo)致圖像失真或引入噪聲D.圖像增強(qiáng)只對(duì)低質(zhì)量的圖像有效果,對(duì)于高質(zhì)量的圖像沒有必要進(jìn)行增強(qiáng)10、在計(jì)算機(jī)視覺的圖像分類任務(wù)中,假設(shè)數(shù)據(jù)集存在類別不平衡問題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下哪種方法可以緩解這種不平衡對(duì)分類模型的影響?()A.對(duì)少數(shù)類進(jìn)行過采樣或?qū)Χ鄶?shù)類進(jìn)行欠采樣B.只使用多數(shù)類的樣本進(jìn)行訓(xùn)練C.不考慮類別不平衡,直接訓(xùn)練模型D.隨機(jī)選擇樣本進(jìn)行訓(xùn)練11、在計(jì)算機(jī)視覺的視覺跟蹤與定位任務(wù)中,實(shí)時(shí)跟蹤物體并確定其在空間中的位置。假設(shè)要在一個(gè)室內(nèi)環(huán)境中跟蹤一個(gè)移動(dòng)的機(jī)器人并確定其位置,以下關(guān)于視覺跟蹤與定位方法的描述,正確的是:()A.基于標(biāo)志物的跟蹤與定位方法在標(biāo)志物被遮擋時(shí)仍能準(zhǔn)確工作B.視覺里程計(jì)方法能夠獨(dú)立實(shí)現(xiàn)高精度的長(zhǎng)期跟蹤與定位C.同時(shí)使用多個(gè)相機(jī)進(jìn)行觀測(cè)不能提高跟蹤與定位的性能D.環(huán)境的光照變化和動(dòng)態(tài)障礙物對(duì)視覺跟蹤與定位的結(jié)果影響較小12、當(dāng)處理低光照條件下拍攝的圖像時(shí),為了增強(qiáng)圖像的亮度和對(duì)比度,同時(shí)減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡(jiǎn)單地增加圖像的整體亮度值D.不進(jìn)行任何處理,保留低光照效果13、當(dāng)利用計(jì)算機(jī)視覺進(jìn)行圖像語(yǔ)義分割任務(wù),例如將圖像中的不同物體分割出來,以下哪種深度學(xué)習(xí)架構(gòu)可能在分割精度和效率方面表現(xiàn)較好?()A.FCNB.U-NetC.SegNetD.以上都是14、計(jì)算機(jī)視覺在無人駕駛飛行器(UAV)中的應(yīng)用可以實(shí)現(xiàn)自主導(dǎo)航和環(huán)境感知。假設(shè)一個(gè)UAV需要在復(fù)雜的環(huán)境中飛行并避開障礙物。以下關(guān)于計(jì)算機(jī)視覺在UAV中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過視覺傳感器獲取周圍環(huán)境的信息,包括地形、建筑物和其他障礙物B.能夠?qū)崟r(shí)分析圖像,計(jì)算與障礙物的距離和相對(duì)速度,為飛行決策提供依據(jù)C.計(jì)算機(jī)視覺在UAV中的應(yīng)用完全不需要與其他傳感器(如慣性測(cè)量單元)的數(shù)據(jù)融合D.可以利用深度學(xué)習(xí)算法進(jìn)行端到端的飛行控制,實(shí)現(xiàn)自主飛行15、當(dāng)進(jìn)行圖像的去霧處理時(shí),假設(shè)要去除圖像中由于霧氣導(dǎo)致的模糊和低對(duì)比度。以下哪種方法可能更有效?()A.基于物理模型的去霧方法,估計(jì)大氣光和透射率B.對(duì)圖像進(jìn)行簡(jiǎn)單的對(duì)比度增強(qiáng)C.不進(jìn)行去霧處理,保留有霧的效果D.隨機(jī)調(diào)整圖像的亮度和飽和度16、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)是指確定物體在三維空間中的位置和方向。以下關(guān)于姿態(tài)估計(jì)的說法,錯(cuò)誤的是()A.姿態(tài)估計(jì)可以通過單目相機(jī)、雙目相機(jī)或深度相機(jī)來實(shí)現(xiàn)B.基于深度學(xué)習(xí)的方法在姿態(tài)估計(jì)任務(wù)中表現(xiàn)出了較高的精度C.姿態(tài)估計(jì)在機(jī)器人操作、增強(qiáng)現(xiàn)實(shí)等領(lǐng)域有著重要的應(yīng)用價(jià)值D.姿態(tài)估計(jì)的結(jié)果總是非常精確,不受物體形狀和遮擋的影響17、計(jì)算機(jī)視覺中的目標(biāo)計(jì)數(shù)是估計(jì)圖像或視頻中目標(biāo)的數(shù)量。假設(shè)要在一張人群圖像中準(zhǔn)確計(jì)數(shù)人數(shù),以下關(guān)于目標(biāo)計(jì)數(shù)方法的描述,正確的是:()A.基于檢測(cè)的計(jì)數(shù)方法通過檢測(cè)每個(gè)個(gè)體來實(shí)現(xiàn)計(jì)數(shù),對(duì)密集場(chǎng)景效果好B.基于回歸的計(jì)數(shù)方法直接預(yù)測(cè)目標(biāo)數(shù)量,計(jì)算速度快但精度較低C.深度學(xué)習(xí)中的注意力機(jī)制在目標(biāo)計(jì)數(shù)中沒有作用,不能提高計(jì)數(shù)準(zhǔn)確性D.目標(biāo)計(jì)數(shù)只需要考慮目標(biāo)的外觀特征,不需要考慮圖像的上下文信息18、當(dāng)進(jìn)行圖像的光流估計(jì)時(shí),假設(shè)要計(jì)算圖像中像素的運(yùn)動(dòng)速度和方向。以下哪種光流估計(jì)算法在復(fù)雜場(chǎng)景下可能更準(zhǔn)確?()A.Horn-Schunck算法B.Lucas-Kanade算法C.隨機(jī)估計(jì)光流D.不進(jìn)行光流估計(jì),忽略像素的運(yùn)動(dòng)信息19、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,根據(jù)用戶的需求從圖像數(shù)據(jù)庫(kù)中查找相關(guān)圖像。假設(shè)要從一個(gè)大型的圖像庫(kù)中檢索包含特定物體的圖像,以下關(guān)于圖像檢索方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像的內(nèi)容特征,如顏色、形狀和紋理等,進(jìn)行相似性度量和檢索B.深度學(xué)習(xí)模型能夠提取更具語(yǔ)義和判別力的特征,提高圖像檢索的準(zhǔn)確性C.圖像檢索的結(jié)果只取決于圖像的特征表示,與檢索算法的效率無關(guān)D.可以結(jié)合用戶的反饋和交互,不斷優(yōu)化圖像檢索的結(jié)果20、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)是確定物體在三維空間中的位置和方向。假設(shè)要估計(jì)一個(gè)機(jī)器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計(jì)方法的描述,哪一項(xiàng)是不正確的?()A.基于視覺的姿態(tài)估計(jì)可以通過分析物體在圖像中的特征點(diǎn)來計(jì)算其姿態(tài)B.可以結(jié)合多個(gè)攝像頭的圖像信息,提高姿態(tài)估計(jì)的精度和魯棒性C.姿態(tài)估計(jì)通常需要先對(duì)物體進(jìn)行建模,然后通過匹配圖像和模型來確定姿態(tài)D.姿態(tài)估計(jì)的結(jié)果總是非常準(zhǔn)確,不受圖像噪聲、遮擋和物體形狀變化的影響二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)計(jì)算機(jī)視覺中如何利用強(qiáng)化學(xué)習(xí)進(jìn)行目標(biāo)搜索?2、(本題5分)解釋計(jì)算機(jī)視覺中的光流估計(jì)的概念及用途。3、(本題5分)簡(jiǎn)述圖像的色彩融合方法。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)分析某藝術(shù)工作室的宣傳視頻設(shè)計(jì),研究其在畫面剪輯、音樂音效、文案撰寫等方面如何展示工作室的創(chuàng)作過程和藝術(shù)成果,吸引客戶合作。2、(本題5分)分析某城市的公交站臺(tái)廣告設(shè)計(jì),探討其簡(jiǎn)潔明了的信息、醒目的色彩、吸引人的圖片如何吸引乘客的注意力。3、(本題5分)分析某品牌的宣傳海報(bào)色彩運(yùn)用原則,探討其如何運(yùn)用色彩搭配和色彩心理學(xué)原理,傳達(dá)品牌的情感和價(jià)值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論