![紹興文理學(xué)院元培學(xué)院《信息圖形設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁(yè)](http://file4.renrendoc.com/view9/M01/2C/01/wKhkGWdT0baAKbZZAANSE45rCcU338.jpg)
![紹興文理學(xué)院元培學(xué)院《信息圖形設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁(yè)](http://file4.renrendoc.com/view9/M01/2C/01/wKhkGWdT0baAKbZZAANSE45rCcU3382.jpg)
![紹興文理學(xué)院元培學(xué)院《信息圖形設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁(yè)](http://file4.renrendoc.com/view9/M01/2C/01/wKhkGWdT0baAKbZZAANSE45rCcU3383.jpg)
![紹興文理學(xué)院元培學(xué)院《信息圖形設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁(yè)](http://file4.renrendoc.com/view9/M01/2C/01/wKhkGWdT0baAKbZZAANSE45rCcU3384.jpg)
![紹興文理學(xué)院元培學(xué)院《信息圖形設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁(yè)](http://file4.renrendoc.com/view9/M01/2C/01/wKhkGWdT0baAKbZZAANSE45rCcU3385.jpg)
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)紹興文理學(xué)院元培學(xué)院《信息圖形設(shè)計(jì)》
2021-2022學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的病變區(qū)域準(zhǔn)確分割出來(lái)。以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的分割方法簡(jiǎn)單高效,適用于所有類型的醫(yī)學(xué)圖像分割B.區(qū)域生長(zhǎng)法能夠根據(jù)像素的相似性進(jìn)行分割,但容易受到噪聲的影響C.圖割算法在處理復(fù)雜的圖像結(jié)構(gòu)時(shí)表現(xiàn)不佳,難以得到準(zhǔn)確的分割結(jié)果D.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)在圖像分割中無(wú)法處理不同大小的病變區(qū)域2、計(jì)算機(jī)視覺(jué)在無(wú)人駕駛飛行器(UAV)中的應(yīng)用可以實(shí)現(xiàn)自主導(dǎo)航和環(huán)境感知。假設(shè)一個(gè)UAV需要在復(fù)雜的環(huán)境中飛行并避開(kāi)障礙物。以下關(guān)于計(jì)算機(jī)視覺(jué)在UAV中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)視覺(jué)傳感器獲取周圍環(huán)境的信息,包括地形、建筑物和其他障礙物B.能夠?qū)崟r(shí)分析圖像,計(jì)算與障礙物的距離和相對(duì)速度,為飛行決策提供依據(jù)C.計(jì)算機(jī)視覺(jué)在UAV中的應(yīng)用完全不需要與其他傳感器(如慣性測(cè)量單元)的數(shù)據(jù)融合D.可以利用深度學(xué)習(xí)算法進(jìn)行端到端的飛行控制,實(shí)現(xiàn)自主飛行3、在一個(gè)基于計(jì)算機(jī)視覺(jué)的智能零售系統(tǒng)中,需要對(duì)顧客的購(gòu)物行為進(jìn)行分析,如拿起商品、放回商品等動(dòng)作的識(shí)別。以下哪種技術(shù)在動(dòng)作識(shí)別方面可能發(fā)揮重要作用?()A.光流分析B.目標(biāo)跟蹤C(jī).動(dòng)作捕捉D.以上都是4、在醫(yī)學(xué)圖像分析中,計(jì)算機(jī)視覺(jué)技術(shù)有助于疾病的診斷和治療。假設(shè)醫(yī)生需要對(duì)一組肺部CT圖像進(jìn)行分析,以檢測(cè)是否存在腫瘤。以下關(guān)于醫(yī)學(xué)圖像分析中的計(jì)算機(jī)視覺(jué)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.計(jì)算機(jī)視覺(jué)算法可以自動(dòng)檢測(cè)和定位肺部腫瘤,提高診斷的效率和準(zhǔn)確性B.能夠?qū)D像進(jìn)行增強(qiáng)和預(yù)處理,突出病變區(qū)域,便于醫(yī)生觀察和判斷C.由于醫(yī)學(xué)圖像的復(fù)雜性和個(gè)體差異,計(jì)算機(jī)視覺(jué)的結(jié)果總是完全準(zhǔn)確無(wú)誤的D.可以通過(guò)大量標(biāo)注的醫(yī)學(xué)圖像數(shù)據(jù)進(jìn)行訓(xùn)練,學(xué)習(xí)正常和異常的圖像特征5、計(jì)算機(jī)視覺(jué)在無(wú)人駕駛飛行器(UAV)中的應(yīng)用可以輔助飛行和導(dǎo)航。假設(shè)一架UAV需要依靠視覺(jué)信息避開(kāi)障礙物,以下關(guān)于UAV計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.僅依靠單目視覺(jué)就能準(zhǔn)確估計(jì)障礙物的距離和速度B.視覺(jué)信息在UAV飛行中的作用有限,主要依靠其他傳感器如GPSC.多目視覺(jué)和深度學(xué)習(xí)算法的結(jié)合可以為UAV提供更準(zhǔn)確的環(huán)境感知和障礙物避讓能力D.UAV的飛行速度和姿態(tài)對(duì)視覺(jué)系統(tǒng)的性能沒(méi)有影響6、在計(jì)算機(jī)視覺(jué)中,以下哪種方法常用于圖像的語(yǔ)義分割中的多尺度特征融合?()A.特征金字塔B.空洞卷積C.注意力機(jī)制D.以上都是7、在計(jì)算機(jī)視覺(jué)中,人臉檢測(cè)和識(shí)別是重要的應(yīng)用方向。以下關(guān)于人臉檢測(cè)和識(shí)別的說(shuō)法,不正確的是()A.人臉檢測(cè)旨在確定圖像或視頻中是否存在人臉,并定位人臉的位置B.人臉識(shí)別是在檢測(cè)到人臉的基礎(chǔ)上,對(duì)人臉的身份進(jìn)行識(shí)別和驗(yàn)證C.深度學(xué)習(xí)方法在人臉檢測(cè)和識(shí)別中取得了巨大的成功,但仍然存在一些挑戰(zhàn),如光照變化和姿態(tài)變化D.人臉檢測(cè)和識(shí)別技術(shù)已經(jīng)非常成熟,不存在任何錯(cuò)誤率和安全隱患8、計(jì)算機(jī)視覺(jué)中的動(dòng)作識(shí)別是一個(gè)具有挑戰(zhàn)性的任務(wù)。假設(shè)要識(shí)別一段體育比賽視頻中的運(yùn)動(dòng)員動(dòng)作,以下關(guān)于特征選擇的方法,哪一項(xiàng)是不太可行的?()A.提取運(yùn)動(dòng)員的身體輪廓和關(guān)節(jié)位置作為特征B.僅使用視頻的音頻信息來(lái)判斷運(yùn)動(dòng)員的動(dòng)作C.計(jì)算視頻幀之間的光流變化作為動(dòng)作特征D.結(jié)合空間和時(shí)間維度的特征來(lái)描述動(dòng)作9、計(jì)算機(jī)視覺(jué)中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定目標(biāo)。假設(shè)要跟蹤一個(gè)在復(fù)雜場(chǎng)景中運(yùn)動(dòng)的人物,以下關(guān)于目標(biāo)跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準(zhǔn)確預(yù)測(cè)目標(biāo)的運(yùn)動(dòng)軌跡,但對(duì)目標(biāo)外觀變化適應(yīng)性差B.基于粒子濾波的跟蹤算法計(jì)算復(fù)雜度低,適用于實(shí)時(shí)跟蹤要求高的場(chǎng)景C.基于深度學(xué)習(xí)的跟蹤算法需要大量的訓(xùn)練數(shù)據(jù),并且在目標(biāo)被遮擋時(shí)容易丟失D.目標(biāo)跟蹤算法只要在初始幀中準(zhǔn)確檢測(cè)到目標(biāo),就能夠在后續(xù)幀中一直保持跟蹤的準(zhǔn)確性10、在計(jì)算機(jī)視覺(jué)的視頻目標(biāo)跟蹤中,假設(shè)目標(biāo)在視頻中被短暫遮擋。以下關(guān)于處理遮擋情況的方法,哪一項(xiàng)是不太有效的?()A.利用目標(biāo)在遮擋前的運(yùn)動(dòng)軌跡預(yù)測(cè)其位置B.完全放棄對(duì)被遮擋目標(biāo)的跟蹤,等待其重新出現(xiàn)C.結(jié)合目標(biāo)的外觀特征和運(yùn)動(dòng)信息進(jìn)行跟蹤D.借助周圍背景和其他相關(guān)物體的信息輔助跟蹤11、在計(jì)算機(jī)視覺(jué)的目標(biāo)計(jì)數(shù)任務(wù)中,統(tǒng)計(jì)圖像或視頻中目標(biāo)的數(shù)量。假設(shè)要統(tǒng)計(jì)一個(gè)果園中蘋果的數(shù)量,以下關(guān)于目標(biāo)計(jì)數(shù)方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像分割和對(duì)象識(shí)別的方法,先分割出每個(gè)蘋果,然后進(jìn)行計(jì)數(shù)B.利用深度學(xué)習(xí)中的回歸模型直接預(yù)測(cè)蘋果的數(shù)量C.目標(biāo)計(jì)數(shù)不受蘋果的大小、形狀和分布的影響,任何情況下都能準(zhǔn)確計(jì)數(shù)D.結(jié)合多視角圖像或視頻序列可以提高目標(biāo)計(jì)數(shù)的準(zhǔn)確性12、計(jì)算機(jī)視覺(jué)中的場(chǎng)景文本識(shí)別旨在從圖像中識(shí)別出文字信息。假設(shè)要在一張街景圖像中識(shí)別出店鋪招牌上的文字。以下關(guān)于場(chǎng)景文本識(shí)別方法的描述,正確的是:()A.基于光學(xué)字符識(shí)別(OCR)技術(shù)的方法對(duì)字體和排版的變化適應(yīng)性強(qiáng),識(shí)別準(zhǔn)確率高B.深度學(xué)習(xí)中的端到端文本識(shí)別模型能夠處理彎曲和變形的文本,但對(duì)模糊文本效果不佳C.場(chǎng)景文本識(shí)別只需要關(guān)注文本的內(nèi)容,不需要考慮文本的位置和上下文信息D.所有的場(chǎng)景文本識(shí)別方法都能夠在復(fù)雜的自然場(chǎng)景中準(zhǔn)確無(wú)誤地識(shí)別出各種文字13、在計(jì)算機(jī)視覺(jué)中,目標(biāo)檢測(cè)是一項(xiàng)重要的任務(wù)。假設(shè)要開(kāi)發(fā)一個(gè)能夠在城市交通場(chǎng)景中檢測(cè)車輛和行人的系統(tǒng)。以下關(guān)于目標(biāo)檢測(cè)算法的選擇,哪一項(xiàng)是需要重點(diǎn)考慮的因素?()A.算法的檢測(cè)速度,以滿足實(shí)時(shí)性要求B.算法在小目標(biāo)檢測(cè)上的性能,因?yàn)檐囕v和行人在圖像中可能較小C.算法的模型復(fù)雜度,越復(fù)雜的模型效果越好D.算法是否開(kāi)源,開(kāi)源的算法更易于使用14、計(jì)算機(jī)視覺(jué)中的圖像去霧是一個(gè)具有挑戰(zhàn)性的問(wèn)題。假設(shè)要去除一張有濃霧的風(fēng)景圖像中的霧氣,以下哪種方法可能需要對(duì)大氣散射模型有深入的了解?()A.基于深度學(xué)習(xí)的去霧方法B.基于物理模型的去霧方法C.基于圖像增強(qiáng)的去霧方法D.基于濾波的去霧方法15、在計(jì)算機(jī)視覺(jué)的醫(yī)學(xué)圖像分析任務(wù)中,假設(shè)要檢測(cè)醫(yī)學(xué)圖像中的腫瘤區(qū)域。以下哪種方法可能更適合處理醫(yī)學(xué)圖像的特殊性?()A.結(jié)合先驗(yàn)醫(yī)學(xué)知識(shí)和圖像特征B.使用通用的圖像檢測(cè)算法,不考慮醫(yī)學(xué)背景C.只對(duì)圖像的部分區(qū)域進(jìn)行分析,忽略其他部分D.隨機(jī)標(biāo)記圖像中的區(qū)域?yàn)槟[瘤區(qū)域二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋計(jì)算機(jī)視覺(jué)在行人檢測(cè)和跟蹤中的技術(shù)。2、(本題5分)簡(jiǎn)述圖像的小波變換的特點(diǎn)。3、(本題5分)解釋計(jì)算機(jī)視覺(jué)中注意力機(jī)制的作用。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)設(shè)計(jì)一個(gè)程序,通過(guò)計(jì)算機(jī)視覺(jué)識(shí)別不同品牌的相機(jī)。2、(本題5分)運(yùn)用圖像識(shí)別技術(shù),檢測(cè)博物館展品的保護(hù)情況。3、(本題5分)運(yùn)用計(jì)算機(jī)視覺(jué)技術(shù),對(duì)珠寶首飾的品質(zhì)和真?zhèn)芜M(jìn)行鑒定。4、(本題5分)利用深度學(xué)習(xí)算法,對(duì)不同種類的蔬菜圖像進(jìn)行分類。5、(本題5分)開(kāi)發(fā)一個(gè)能夠識(shí)別不同種類兩棲動(dòng)物的計(jì)算機(jī)視覺(jué)系統(tǒng)。四、分析題(本大題共3個(gè)小題,共30分)1、(本題10分)研究某烘焙品牌的店面招牌設(shè)計(jì),剖析其如何通過(guò)字體、色彩和
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年調(diào)脂抗動(dòng)脈粥樣硬化藥項(xiàng)目提案報(bào)告模范
- 2025年輸注延長(zhǎng)管項(xiàng)目申請(qǐng)報(bào)告模板
- 2025年衛(wèi)生巾供應(yīng)合同格式
- 2025年加工服務(wù)協(xié)作協(xié)議模板
- 2025年合作研發(fā)新范本協(xié)議書(shū)
- 2025年個(gè)人房產(chǎn)購(gòu)買協(xié)議標(biāo)準(zhǔn)文本
- 2025年農(nóng)村住宅用地互易協(xié)議標(biāo)準(zhǔn)化
- 2025年電氣安裝工程策劃合作框架協(xié)議范本提供
- 2025年修理廠技術(shù)師傅指導(dǎo)學(xué)徒合同
- 2025年信用卡消費(fèi)抵押貸款協(xié)議書(shū)
- 租房協(xié)議書(shū) 租房協(xié)議書(shū)范本
- 《電力工程電纜設(shè)計(jì)規(guī)范》高壓、超高壓電力電纜及 制造、使用和運(yùn)行情況
- 內(nèi)蒙古呼和浩特市2023年中考?xì)v史試題(附真題答案)
- 急診科護(hù)理帶教經(jīng)驗(yàn)
- 《預(yù)防脊柱側(cè)彎》課件
- 教師工作職責(zé)培訓(xùn)非暴力溝通與沖突解決
- 學(xué)校保密教育培訓(xùn)課件
- 關(guān)于教師誦讀技能培訓(xùn)課件
- 英語(yǔ)中考寫(xiě)作課件(33張PPT)
- 化學(xué)品使用人員培訓(xùn)課程
- 銷售人員薪酬設(shè)計(jì)實(shí)例 薪酬制度設(shè)計(jì) 薪酬設(shè)計(jì)方案 設(shè)計(jì)案例全套
評(píng)論
0/150
提交評(píng)論