韶關(guān)學(xué)院《Hadoop+spark大數(shù)據(jù)分析技術(shù)課程設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
韶關(guān)學(xué)院《Hadoop+spark大數(shù)據(jù)分析技術(shù)課程設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
韶關(guān)學(xué)院《Hadoop+spark大數(shù)據(jù)分析技術(shù)課程設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
韶關(guān)學(xué)院《Hadoop+spark大數(shù)據(jù)分析技術(shù)課程設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記。…………密………………封………………線…………第1頁,共1頁韶關(guān)學(xué)院《Hadoop+spark大數(shù)據(jù)分析技術(shù)課程設(shè)計》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在進行數(shù)據(jù)分析時,需要對數(shù)據(jù)進行預(yù)處理以提高分析的準確性和效率。假設(shè)要處理一個包含大量文本數(shù)據(jù)的數(shù)據(jù)集,需要將文本轉(zhuǎn)換為可分析的數(shù)值形式。以下哪種文本預(yù)處理方法在這種情況下最為常用和有效?()A.詞袋模型B.TF-IDF加權(quán)C.主題模型D.情感分析2、在建立回歸模型時,如果自變量的數(shù)量較多,為了篩選出對因變量有顯著影響的自變量,以下哪種方法經(jīng)常被使用?()A.逐步回歸B.嶺回歸C.套索回歸D.以上都是3、數(shù)據(jù)分析中,數(shù)據(jù)挖掘的過程包括多個步驟。以下關(guān)于數(shù)據(jù)挖掘過程的說法中,錯誤的是?()A.數(shù)據(jù)挖掘的過程包括數(shù)據(jù)準備、數(shù)據(jù)挖掘、結(jié)果解釋和評估等步驟B.數(shù)據(jù)準備階段包括數(shù)據(jù)清洗、數(shù)據(jù)集成和數(shù)據(jù)轉(zhuǎn)換等工作C.數(shù)據(jù)挖掘階段可以使用多種算法和技術(shù),如決策樹、聚類、關(guān)聯(lián)規(guī)則挖掘等D.數(shù)據(jù)挖掘的結(jié)果不需要進行解釋和評估,直接應(yīng)用于實際問題即可4、假設(shè)要分析某網(wǎng)站不同頁面的訪問量分布情況,以下哪種圖表能夠直觀地展示訪問量的集中程度和離散程度?()A.直方圖B.箱線圖C.小提琴圖D.以上都不是5、在進行時間序列分析時,如果數(shù)據(jù)存在明顯的長期趨勢和季節(jié)性變動,以下哪種模型較為適用?()A.ARIMA模型B.SARIMA模型C.Holt-Winters模型D.以上都不是6、對于數(shù)據(jù)可視化,假設(shè)要展示不同地區(qū)在過去十年間的經(jīng)濟增長趨勢。數(shù)據(jù)涵蓋多個指標,且地區(qū)之間存在較大差異。為了清晰、直觀地呈現(xiàn)數(shù)據(jù)的變化和對比,以下哪種可視化圖表可能是最適合的?()A.柱狀圖,分別展示每個地區(qū)每年的經(jīng)濟數(shù)據(jù)B.折線圖,呈現(xiàn)每個地區(qū)經(jīng)濟數(shù)據(jù)隨時間的變化C.餅圖,展示各地區(qū)在某一年的經(jīng)濟占比D.箱線圖,反映數(shù)據(jù)的分布情況7、數(shù)據(jù)分析中常用的統(tǒng)計方法有很多,其中描述性統(tǒng)計是一種基礎(chǔ)的方法。以下關(guān)于描述性統(tǒng)計的描述中,錯誤的是?()A.描述性統(tǒng)計可以用來概括數(shù)據(jù)的集中趨勢、離散程度和分布形狀B.描述性統(tǒng)計可以通過計算均值、中位數(shù)、標準差等指標來實現(xiàn)C.描述性統(tǒng)計只能對數(shù)值型數(shù)據(jù)進行分析,對于分類型數(shù)據(jù)無法處理D.描述性統(tǒng)計是數(shù)據(jù)分析的第一步,為進一步的分析提供基礎(chǔ)8、在數(shù)據(jù)分析中的數(shù)據(jù)預(yù)處理階段,以下關(guān)于數(shù)據(jù)標準化和歸一化的敘述,不準確的是()A.數(shù)據(jù)標準化是將數(shù)據(jù)轉(zhuǎn)換為具有零均值和單位方差的分布,使不同特征在數(shù)值上具有可比性B.數(shù)據(jù)歸一化是將數(shù)據(jù)映射到特定的區(qū)間,如[0,1]或[-1,1],以消除量綱的影響C.標準化和歸一化對于某些算法(如基于距離的算法)的性能提升有幫助,但不是必需的步驟D.無論數(shù)據(jù)的分布和特征如何,都應(yīng)該進行標準化或歸一化處理,以確保分析結(jié)果的準確性9、在建立回歸模型時,如果數(shù)據(jù)存在異方差性,以下哪種方法可以解決這個問題?()A.加權(quán)最小二乘法B.嶺回歸C.套索回歸D.以上都不是10、假設(shè)要分析一個市場調(diào)研數(shù)據(jù)集,了解消費者對不同品牌、產(chǎn)品特性和價格的偏好。在設(shè)計調(diào)查問卷和收集數(shù)據(jù)時,以下哪個原則可能是最重要的,以確保數(shù)據(jù)的質(zhì)量和有效性?()A.問題的清晰性和簡潔性B.盡量多設(shè)置問題以獲取更多信息C.引導(dǎo)消費者給出特定答案D.不考慮消費者的反饋11、數(shù)據(jù)分析中的假設(shè)檢驗用于判斷樣本數(shù)據(jù)是否支持某個假設(shè)。假設(shè)要檢驗一種新的教學(xué)方法是否能顯著提高學(xué)生的成績,以下關(guān)于假設(shè)檢驗的描述,正確的是:()A.不設(shè)定原假設(shè)和備擇假設(shè),直接進行檢驗B.忽略檢驗的顯著性水平,隨意得出結(jié)論C.正確設(shè)定原假設(shè)和備擇假設(shè),選擇合適的檢驗統(tǒng)計量,根據(jù)顯著性水平和樣本數(shù)據(jù)進行推斷,并解釋檢驗結(jié)果的實際意義D.只關(guān)注檢驗結(jié)果是否拒絕原假設(shè),不考慮效應(yīng)大小和實際應(yīng)用價值12、對于數(shù)據(jù)分析中的因果推斷,假設(shè)要確定一個因素是否真正導(dǎo)致了某種結(jié)果。以下哪種方法或思路在進行因果分析時可能是關(guān)鍵的?()A.隨機對照試驗B.觀察性研究結(jié)合工具變量C.反事實推理D.僅根據(jù)相關(guān)性得出因果結(jié)論13、當處理高維度的數(shù)據(jù)時,以下哪種方法可以用于降低數(shù)據(jù)的維度,同時保留重要的信息?()A.主成分分析B.因子分析C.線性判別分析D.以上都是14、在數(shù)據(jù)分析的探索性分析階段,假設(shè)面對一個包含消費者購買行為的大型數(shù)據(jù)集,包括購買金額、購買頻率、購買商品類別等多個變量。為了初步了解數(shù)據(jù)的特征、分布和潛在關(guān)系,以下哪種方法可能最為有效?()A.計算各個變量的均值、中位數(shù)和標準差等統(tǒng)計量B.進行相關(guān)性分析,確定變量之間的關(guān)聯(lián)程度C.繪制直方圖和散點圖來觀察變量的分布和關(guān)系D.隨機抽取部分數(shù)據(jù)進行簡單觀察15、數(shù)據(jù)分析中的主成分分析(PCA)常用于數(shù)據(jù)降維。假設(shè)我們有一個高維的數(shù)據(jù)集,其中包含大量相關(guān)的特征,通過PCA進行降維時,以下哪個說法是正確的?()A.降維后的主成分數(shù)量一定少于原始特征數(shù)量B.主成分是原始特征的線性組合C.降維過程會丟失部分數(shù)據(jù)信息D.以上都是16、在進行數(shù)據(jù)清洗時,發(fā)現(xiàn)數(shù)據(jù)存在重復(fù)記錄。以下哪種方法可以有效地去除重復(fù)記錄?()A.手動篩選B.使用數(shù)據(jù)庫的去重功能C.隨機刪除一部分重復(fù)記錄D.對重復(fù)記錄進行合并17、在數(shù)據(jù)分析中,大數(shù)據(jù)技術(shù)為處理海量數(shù)據(jù)提供了支持。假設(shè)要處理一個PB級別的數(shù)據(jù)集,以下關(guān)于大數(shù)據(jù)技術(shù)的描述,哪一項是不正確的?()A.Hadoop生態(tài)系統(tǒng)中的HDFS用于分布式存儲數(shù)據(jù),能夠擴展到大規(guī)模的集群B.MapReduce編程模型可以實現(xiàn)并行處理,提高數(shù)據(jù)處理的效率C.大數(shù)據(jù)技術(shù)只適用于處理結(jié)構(gòu)化數(shù)據(jù),對于非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)無能為力D.實時處理大數(shù)據(jù)可以使用SparkStreaming或Flink等框架18、數(shù)據(jù)分析中的假設(shè)檢驗用于判斷樣本數(shù)據(jù)是否支持某個假設(shè)。假設(shè)我們要檢驗一種新的營銷策略是否有效。以下關(guān)于假設(shè)檢驗的描述,哪一項是不正確的?()A.零假設(shè)通常表示沒有差異或沒有效果B.通過計算檢驗統(tǒng)計量和p值來決定是否拒絕零假設(shè)C.p值越小,說明拒絕零假設(shè)的證據(jù)越充分D.假設(shè)檢驗的結(jié)果一定能夠準確地反映實際情況,不存在誤差19、在數(shù)據(jù)挖掘中,以下哪種算法常用于對客戶進行分類,以實現(xiàn)精準營銷?()A.決策樹算法B.聚類算法C.關(guān)聯(lián)規(guī)則挖掘算法D.神經(jīng)網(wǎng)絡(luò)算法20、在進行數(shù)據(jù)分析時,發(fā)現(xiàn)數(shù)據(jù)集中存在一些離群點。對于離群點的處理,以下哪種方法較為恰當?()A.直接刪除B.視為異常值,進行特殊分析C.用平均值替代D.忽略不管21、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量評估是確保數(shù)據(jù)可靠性的重要手段。以下關(guān)于數(shù)據(jù)質(zhì)量評估的說法中,錯誤的是?()A.數(shù)據(jù)質(zhì)量評估可以使用多種指標,如準確性、完整性、一致性等B.數(shù)據(jù)質(zhì)量評估可以通過手動檢查和自動化工具相結(jié)合的方式進行C.數(shù)據(jù)質(zhì)量評估應(yīng)定期進行,及時發(fā)現(xiàn)和解決數(shù)據(jù)質(zhì)量問題D.數(shù)據(jù)質(zhì)量評估只需要在數(shù)據(jù)進入數(shù)據(jù)倉庫之前進行,之后就不需要再進行評估了22、假設(shè)我們有一組銷售數(shù)據(jù),要分析不同產(chǎn)品類別的銷售額在總銷售額中的占比情況,以下哪種圖表最能直觀地展示結(jié)果?()A.折線圖B.柱狀圖C.餅圖D.箱線圖23、在數(shù)據(jù)分析中,數(shù)據(jù)安全的措施有很多,其中訪問控制是一種重要的措施。以下關(guān)于訪問控制的描述中,錯誤的是?()A.訪問控制可以限制用戶對數(shù)據(jù)的訪問權(quán)限B.訪問控制可以防止數(shù)據(jù)的泄露和篡改C.訪問控制可以分為身份認證和授權(quán)兩個環(huán)節(jié)D.訪問控制只適用于企業(yè)內(nèi)部的數(shù)據(jù)管理,對于外部數(shù)據(jù)無法進行控制24、在進行數(shù)據(jù)分析時,異常值檢測是重要的環(huán)節(jié)。假設(shè)要在一組銷售數(shù)據(jù)中檢測異常值,以下關(guān)于異常值檢測的描述,哪一項是不準確的?()A.可以基于數(shù)據(jù)的統(tǒng)計特征,如均值和標準差,來確定異常值的范圍B.箱線圖能夠直觀地展示數(shù)據(jù)的分布情況,并幫助識別異常值C.異常值一定是錯誤的數(shù)據(jù),應(yīng)該直接刪除,以免影響分析結(jié)果D.考慮數(shù)據(jù)的業(yè)務(wù)背景和上下文信息,有助于更準確地判斷異常值25、數(shù)據(jù)分析中的時間序列分析常用于預(yù)測未來趨勢。假設(shè)要預(yù)測未來一個月的某商品銷售量,該商品的銷售數(shù)據(jù)具有明顯的季節(jié)性和趨勢性。以下哪種時間序列預(yù)測模型在這種情況下更有可能提供準確的預(yù)測?()A.移動平均模型B.指數(shù)平滑模型C.ARIMA模型D.Prophet模型二、簡答題(本大題共4個小題,共20分)1、(本題5分)在進行時間序列數(shù)據(jù)分析時,如何進行季節(jié)性調(diào)整?解釋季節(jié)性調(diào)整的目的和常用方法,并舉例說明。2、(本題5分)在處理能源數(shù)據(jù)時,常用的數(shù)據(jù)分析方法和技術(shù)有哪些?解釋能源消耗預(yù)測、智能電網(wǎng)優(yōu)化等概念,并舉例說明應(yīng)用。3、(本題5分)在數(shù)據(jù)分析中,如何進行數(shù)據(jù)的相關(guān)性分析?請介紹相關(guān)性分析的方法和指標,如皮爾遜相關(guān)系數(shù)、斯皮爾曼相關(guān)系數(shù)等,并舉例說明。4、(本題5分)在大數(shù)據(jù)分析中,如何進行數(shù)據(jù)的實時處理?請介紹相關(guān)的技術(shù)和框架,如SparkStreaming、Flink等,并舉例說明其應(yīng)用。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)一家汽車銷售公司擁有車輛銷售數(shù)據(jù),包括車型、價格、顏色、銷售地點、購買者年齡等。探究不同年齡層購買者對車型和顏色的選擇偏好以及價格敏感度。2、(本題5分)一家連鎖書店的文學(xué)作品區(qū)域記錄了銷售數(shù)據(jù),包括作品體裁、作者國籍、銷量、價格、讀者年齡等。研究不同體裁和作者國籍的文學(xué)作品在不同年齡讀者中的銷售情況。3、(本題5分)某在線爵士舞教學(xué)平臺積累了學(xué)員學(xué)習(xí)數(shù)據(jù)、舞蹈風(fēng)格喜好、教學(xué)場地需求等。改善爵士舞教學(xué)環(huán)境和教學(xué)內(nèi)容。4、(本題5分)某超市的生鮮類目記錄了銷售數(shù)據(jù),包括商品種類、銷售數(shù)量、價格、促銷活動、季節(jié)因素等。分析季節(jié)因素對不同生鮮商品銷售和促銷活動效果的影響。5、(本題5分)一家連鎖書店的兒童圖書區(qū)域記錄了銷售數(shù)據(jù),包括圖書題材、作者、銷量、價格、促銷活動等。研究不同題材兒童圖書在促銷活動下的銷售表現(xiàn)。四、論述題(本大題共

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論