




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山西省大同市靈丘縣高考臨考沖刺數(shù)學試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.122.已知函數(shù)的值域為,函數(shù),則的圖象的對稱中心為()A. B.C. D.3.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.4.若,則函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是()A.B.C.D.5.定義兩種運算“★”與“◆”,對任意,滿足下列運算性質(zhì):①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.6.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.7.若為虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且9.現(xiàn)有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.10.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.11.執(zhí)行如圖的程序框圖,若輸出的結(jié)果,則輸入的值為()A. B.C.3或 D.或12.己知集合,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為橢圓在第一象限上的點,則的最小值為________.14.已知拋物線的焦點為,過點且斜率為1的直線交拋物線于兩點,,若線段的垂直平分線與軸交點的橫坐標為,則的值為_________.15.若滿足約束條件,則的最大值為__________.16.已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)時,求不等式解集;(2)若的解集包含于,求a的取值范圍.18.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)若函數(shù)有兩個極值點,求證:.19.(12分)在數(shù)列中,已知,且,.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,證明:.20.(12分)的內(nèi)角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.21.(12分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個極值點,求的取值范圍,并證明:.22.(10分)為響應(yīng)“堅定文化自信,建設(shè)文化強國”,提升全民文化修養(yǎng),引領(lǐng)學生“讀經(jīng)典用經(jīng)典”,某廣播電視臺計劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學校隨機抽取了120名學生做調(diào)查,統(tǒng)計結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認為喜歡閱讀中國古典文學與性別有關(guān)系?男生女生總計喜歡閱讀中國古典文學不喜歡閱讀中國古典文學總計(2)為做好文化建設(shè)引領(lǐng),實驗組把該校作為試點,和該校的學生進行中國古典文學閱讀交流.實驗人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學.現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學的人數(shù),求5的分布列及數(shù)學期望附表及公式:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由開始,按照框圖,依次求出s,進行判斷?!驹斀狻?,故選C.【點睛】框圖問題,依據(jù)框圖結(jié)構(gòu),依次準確求出數(shù)值,進行判斷,是解題關(guān)鍵。2、B【解析】
由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數(shù)的圖像及性質(zhì),考查函數(shù)的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為03、D【解析】
根據(jù)點差法得,再根據(jù)焦點坐標得,解方程組得,,即得結(jié)果.【詳解】設(shè)雙曲線的方程為,由題意可得,設(shè),,則的中點為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.4、B【解析】函數(shù)在區(qū)間內(nèi)單調(diào)遞增,,在恒成立,在恒成立,,函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是,故選B.5、B【解析】
根據(jù)新運算的定義分別得出◆2020和2020★2018的值,可得選項.【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.【點睛】本題考查定義新運算,關(guān)鍵在于理解,運用新定義進行求值,屬于中檔題.6、D【解析】
根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.7、B【解析】
由共軛復(fù)數(shù)的定義得到,通過三角函數(shù)值的正負,以及復(fù)數(shù)的幾何意義即得解【詳解】由題意得,因為,,所以在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.故選:B【點睛】本題考查了共軛復(fù)數(shù)的概念及復(fù)數(shù)的幾何意義,考查了學生概念理解,數(shù)形結(jié)合,數(shù)學運算的能力,屬于基礎(chǔ)題.8、D【解析】
首先把三視圖轉(zhuǎn)換為幾何體,根據(jù)三視圖的長度,進一步求出個各棱長.【詳解】根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉(zhuǎn)換,主要考查運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.9、B【解析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計算問題,其中解答中合理應(yīng)用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.10、C【解析】
先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當作一個角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.11、D【解析】
根據(jù)逆運算,倒推回求x的值,根據(jù)x的范圍取舍即可得選項.【詳解】因為,所以當,解得
,所以3是輸入的x的值;當時,解得,所以是輸入的x的值,所以輸入的x的值為
或3,故選:D.【點睛】本題考查了程序框圖的簡單應(yīng)用,通過結(jié)果反求輸入的值,屬于基礎(chǔ)題.12、C【解析】
先化簡,再求.【詳解】因為,又因為,所以,故選:C.【點睛】本題主要考查一元二次不等式的解法、集合的運算,還考查了運算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用橢圓的參數(shù)方程,將所求代數(shù)式的最值問題轉(zhuǎn)化為求三角函數(shù)最值問題,利用兩角和的正弦公式和三角函數(shù)的性質(zhì),以及求導(dǎo)數(shù)、單調(diào)性和極值,即可得到所求最小值.【詳解】解:設(shè)點,,其中,,由,,,可設(shè),導(dǎo)數(shù)為,由,可得,可得或,由,,可得,即,可得,由可得函數(shù)遞減;由,可得函數(shù)遞增,可得時,函數(shù)取得最小值,且為,則的最小值為1.故答案為:1.【點睛】本題考查橢圓參數(shù)方程的應(yīng)用,利用三角函數(shù)的恒等變換和導(dǎo)數(shù)法求函數(shù)最值的方法,考查化簡變形能力和運算能力,屬于難題.14、1【解析】
設(shè),寫出直線方程代入拋物線方程后應(yīng)用韋達定理求得,由拋物線定義得焦點弦長,求得,再寫出的垂直平分線方程,得,從而可得結(jié)論.【詳解】拋物線的焦點坐標為,直線的方程為,據(jù)得.設(shè),則.線段垂直平分線方程為,令,則,所以,所以.故答案為:1.【點睛】本題考查拋物線的焦點弦問題,根據(jù)拋物線的定義表示出焦點弦長是解題關(guān)鍵.15、4【解析】
作出可行域如圖所示:由,解得.目標函數(shù),即為,平移斜率為-1的直線,經(jīng)過點時,.16、0.08【解析】
先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結(jié)果.【詳解】首先求得,.故答案為:0.08.【點睛】本題主要考查數(shù)據(jù)的方差,明確方差的計算公式是求解的關(guān)鍵,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)代入可得對分類討論即可得不等式的解集;(2)根據(jù)不等式在上恒成立去絕對值化簡可得再去絕對值即可得關(guān)于的不等式組解不等式組即可求得的取值范圍【詳解】(1)當時,不等式可化為,①當時,不等式為,解得;②當時,不等式為,無解;③當時,不等式為,解得,綜上,原不等式的解集為.(2)因為的解集包含于,則不等式可化為,即.解得,由題意知,解得,所以實數(shù)a的取值范圍是.【點睛】本題考查了絕對值不等式的解法分類討論解絕對值不等式的應(yīng)用,含參數(shù)不等式的解法.難度一般.18、(Ⅰ)見解析(Ⅱ)見解析【解析】
(Ⅰ)求導(dǎo)得到,討論,,三種情況得到單調(diào)區(qū)間.(Ⅱ)設(shè),要證,即證,,設(shè),根據(jù)函數(shù)單調(diào)性得到證明.【詳解】(Ⅰ),令,,(1)當,即時,,,在上單調(diào)遞增;(2)當,即時,設(shè)的兩根為(),,①若,,時,,所以在和上單調(diào)遞增,時,,所以在上單調(diào)遞減,②若,,時,,所以在上單調(diào)遞減,時,,所以在上單調(diào)遞增.綜上,當時,在上單調(diào)遞增;當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在上單調(diào)遞減,在上單調(diào)遞增.(Ⅱ)不妨設(shè),要證,即證,即證,由(Ⅰ)可知,,,可得,,所以有,令,,所以在單調(diào)遞增,所以,因為,所以,所以.【點睛】本題考查了函數(shù)單調(diào)性,證明不等式,意在考查學生的分類討論能力和計算能力.19、(1);(2)見解析.【解析】
(1)由已知變形得到,從而是等差數(shù)列,然后利用等差數(shù)列的通項公式計算即可;(2)先求出數(shù)列的通項,再利用裂項相消法求出即可.【詳解】(1)由已知,,即,又,則數(shù)列是以1為首項3為公差的等差數(shù)列,所以,即.(2)因為,則,所以,又是遞增數(shù)列,所以,綜上,.【點睛】本題考查由遞推公式求數(shù)列通項公式、裂項相消法求數(shù)列的和,考查學生的計算能力,是一道基礎(chǔ)題.20、(1);(2)【解析】
試題分析:(1)根據(jù)余弦定理求出B,帶入條件求出,利用同角三角函數(shù)關(guān)系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(jù)(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設(shè)條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據(jù)條件選擇正余弦定理,將問題轉(zhuǎn)化統(tǒng)一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內(nèi)角和定理的運用,涉及三角形面積最值問題時,注意均值不等式的利用,特別求角的時候,要注意分析角的范圍,才能寫出角的大小.21、(1)減區(qū)間是,增區(qū)間是;(2),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 重要考點建造師試題及答案解析
- 酒店信息安全培訓(xùn)內(nèi)容
- 小學一年級語文課件《小兔子乖乖》
- 高級會計復(fù)習要點試題及答案在這里
- 實驗課件:二氧化碳溶解實驗研究
- 航空維修記錄的重要性考題及答案
- 黔南州2024-2025學年度第一學期期末質(zhì)量監(jiān)測 化學答案
- 遼寧省丹東市2025屆高三上學期1月期末教學質(zhì)量調(diào)研測試化學
- 2024年廣西壯族桂林市龍勝各族自治縣數(shù)學三上期末達標檢測試題含解析
- 考勤管理體系構(gòu)建與優(yōu)化
- 計算機組成原理練習題(含參考答案)
- 2025浙江溫州市公用事業(yè)發(fā)展集團有限公司招聘54人(第一批)筆試參考題庫附帶答案詳解
- 高速公路執(zhí)法培訓(xùn)
- 物流園區(qū)規(guī)劃與建設(shè)-全面剖析
- 大排檔創(chuàng)業(yè)項目策劃
- 外賣平臺的商家入駐合作協(xié)議
- 煤礦面試筆試試題及答案
- 2025民法典婚姻家庭編司法解釋二解讀
- 殯葬考試面試題及答案
- 2025年鉗工(技師)職業(yè)技能鑒定理論考試題庫(含答案)
- 二年級數(shù)學北師大版下冊第七單元《淘氣的作息時間》教學設(shè)計教案1
評論
0/150
提交評論