2025屆江蘇省海安中學(xué)高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第1頁
2025屆江蘇省海安中學(xué)高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第2頁
2025屆江蘇省海安中學(xué)高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第3頁
2025屆江蘇省海安中學(xué)高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第4頁
2025屆江蘇省海安中學(xué)高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆江蘇省海安中學(xué)高考數(shù)學(xué)考前最后一卷預(yù)測卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知分別為雙曲線的左、右焦點,點是其一條漸近線上一點,且以為直徑的圓經(jīng)過點,若的面積為,則雙曲線的離心率為()A. B. C. D.2.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.3.在復(fù)平面內(nèi),復(fù)數(shù)(,)對應(yīng)向量(O為坐標原點),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.164.已知等差數(shù)列的前項和為,若,,則數(shù)列的公差為()A. B. C. D.5.已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.6.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應(yīng),全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值7.已知函數(shù)的圖像上有且僅有四個不同的點關(guān)于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.8.已知函數(shù)(e為自然對數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的最大值為()A. B. C. D.9.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.10.如圖所示,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.11.已知圓關(guān)于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.12.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)復(fù)數(shù)滿足,則_________.14.已知復(fù)數(shù)z是純虛數(shù),則實數(shù)a=_____,|z|=_____.15.已知兩圓相交于兩點,,若兩圓圓心都在直線上,則的值是________________.16.展開式的第5項的系數(shù)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)年,山東省高考將全面實行“選”的模式(即:語文、數(shù)學(xué)、外語為必考科目,剩下的物理、化學(xué)、歷史、地理、生物、政治六科任選三科進行考試).為了了解學(xué)生對物理學(xué)科的喜好程度,某高中從高一年級學(xué)生中隨機抽取人做調(diào)查.統(tǒng)計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據(jù)此資料判斷是否有的把握認為“喜歡物理與性別有關(guān)”;(2)為了了解學(xué)生對選科的認識,年級決定召開學(xué)生座談會.現(xiàn)從名男同學(xué)和名女同學(xué)(其中男女喜歡物理)中,選取名男同學(xué)和名女同學(xué)參加座談會,記參加座談會的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.18.(12分)某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計,可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)180°而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.(1)求關(guān)于的函數(shù)關(guān)系式;(2)為了達到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時腰的長度.19.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.20.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.21.(12分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學(xué)乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望.22.(10分)某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x與燒開一壺水所用時間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點圖(如圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)若旋轉(zhuǎn)的弧度數(shù)x與單位時間內(nèi)煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)題意,設(shè)點在第一象限,求出此坐標,再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過點,則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點睛】本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.2、C【解析】

需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準線與軸的交點為,過點作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡即可【詳解】如圖,設(shè)準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題3、D【解析】

根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點睛】本題考查了復(fù)數(shù)的新定義題目、同時考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.4、D【解析】

根據(jù)等差數(shù)列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數(shù)列的計算,意在考查學(xué)生的計算能力.5、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設(shè)過點F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點M(,﹣),∵點M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式,建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.6、D【解析】

根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結(jié)論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.7、A【解析】

可將問題轉(zhuǎn)化,求直線關(guān)于直線的對稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結(jié)合圖像可知,即,故選:A【點睛】本題考查數(shù)形結(jié)合思想求解函數(shù)交點問題,導(dǎo)數(shù)研究函數(shù)增減性,找準臨界是解題的關(guān)鍵,屬于中檔題8、A【解析】

若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【詳解】解:,∴,設(shè),∴,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,∴,當時,,當,,函數(shù)恒過點,分別畫出與的圖象,如圖所示,,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,∴且,即,且∴,故實數(shù)m的最大值為,故選:A【點睛】本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運算能力.9、D【解析】

設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎(chǔ)題.10、D【解析】因為蛋巢的底面是邊長為的正方形,所以過四個頂點截雞蛋所得的截面圓的直徑為,又因為雞蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點睛:本題主要考查折疊問題,考查球體有關(guān)的知識.在解答過程中,如果遇到球體或者圓錐等幾何體的內(nèi)接或外接幾何體的問題時,可以采用軸截面的方法來處理.也就是畫出題目通過球心和最低點的截面,然后利用弦長和勾股定理來解決.球的表面積公式和體積公式是需要熟記的.11、C【解析】

將圓,化為標準方程為,求得圓心為.根據(jù)圓關(guān)于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關(guān)于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.12、B【解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:【點睛】本題考查正弦定理的應(yīng)用,余弦函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】

利用復(fù)數(shù)的運算法則首先可得出,再根據(jù)共軛復(fù)數(shù)的概念可得結(jié)果.【詳解】∵復(fù)數(shù)滿足,∴,∴,故而可得,故答案為.【點睛】本題考查了復(fù)數(shù)的運算法則,共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.14、11【解析】

根據(jù)復(fù)數(shù)運算法則計算復(fù)數(shù)z,根據(jù)復(fù)數(shù)的概念和模長公式計算得解.【詳解】復(fù)數(shù)z,∵復(fù)數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點睛】此題考查復(fù)數(shù)的概念和模長計算,根據(jù)復(fù)數(shù)是純虛數(shù)建立方程求解,計算模長,關(guān)鍵在于熟練掌握復(fù)數(shù)的運算法則.15、【解析】

根據(jù)題意,相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上,列出方程解得即可得到結(jié)論.【詳解】由,,設(shè)的中點為,根據(jù)題意,可得,且,解得,,,故.故答案為:.【點睛】本題考查相交弦的性質(zhì),解題的關(guān)鍵在于利用相交弦的性質(zhì),即兩圓的連心線垂直平分相交弦,屬于基礎(chǔ)題.16、70【解析】

根據(jù)二項式定理的通項公式,可得結(jié)果.【詳解】由題可知:第5項為故第5項的的系數(shù)為故答案為:70.【點睛】本題考查的是二項式定理,屬基礎(chǔ)題。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)有的把握認為喜歡物理與性別有關(guān);(2)分布列見解析,.【解析】

(1)根據(jù)題目所給信息,列出列聯(lián)表,計算的觀測值,對照臨界值表可得出結(jié)論;(2)設(shè)參加座談會的人中喜歡物理的男同學(xué)有人,女同學(xué)有人,則,確定的所有取值為、、、、.根據(jù)計數(shù)原理計算出每個所對應(yīng)的概率,列出分布列計算期望即可.【詳解】(1)根據(jù)所給條件得列聯(lián)表如下:男女合計喜歡物理不喜歡物理合計,所以有的把握認為喜歡物理與性別有關(guān);(2)設(shè)參加座談會的人中喜歡物理的男同學(xué)有人,女同學(xué)有人,則,由題意可知,的所有可能取值為、、、、.,,,,.所以的分布列為:所以.【點睛】本題考查了獨立性檢驗、離散型隨機變量的概率分布列.離散型隨機變量的期望.屬于中等題.18、(1),(2)側(cè)面積取得最大值時,等腰三角形的腰的長度為【解析】試題分析:(1)由條件,,,所以S,;(2)令,所以得,通過求導(dǎo)分析,得在時取得極大值,也是最大值.試題解析:(1)設(shè)交于點,過作,垂足為,在中,,,在中,,所以S,(2)要使側(cè)面積最大,由(1)得:令,所以得,由得:當時,,當時,所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,所以在時取得極大值,也是最大值;所以當時,側(cè)面積取得最大值,此時等腰三角形的腰長答:側(cè)面積取得最大值時,等腰三角形的腰的長度為.19、(1)見解析;(2)最大值為.【解析】

(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調(diào)性求出該函數(shù)的最小值,進而可證得結(jié)論成立;(2)由可得出,并將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,進而可得出實數(shù)的最大值.【詳解】(1).當時,函數(shù)單調(diào)遞減,則;當時,函數(shù)單調(diào)遞增,則;當時,函數(shù)單調(diào)遞增,則.綜上所述,,所以;(2)因為恒成立,且,,所以恒成立,即.因為,當且僅當時等號成立,所以,實數(shù)的最大值為.【點睛】本題考查含絕對值函數(shù)最值的求解,同時也考查了利用基本不等式恒成立求參數(shù),考查推理能力與計算能力,屬于中等題.20、(1);(2)【解析】

(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當且僅當時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【點睛】本題考查了正弦和角公式化簡三角函數(shù)式的應(yīng)用,余

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論