版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第一篇熱點(diǎn)、難點(diǎn)突破篇專題13數(shù)列的通項(xiàng)與數(shù)列的求和(講)真題體驗(yàn)感悟高考1.(2022·浙江·統(tǒng)考高考真題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先通過遞推關(guān)系式確定SKIPIF1<0除去SKIPIF1<0,其他項(xiàng)都在SKIPIF1<0范圍內(nèi),再利用遞推公式變形得到SKIPIF1<0,累加可求出SKIPIF1<0,得出SKIPIF1<0,再利用SKIPIF1<0,累加可求出SKIPIF1<0,再次放縮可得出SKIPIF1<0.【詳解】∵SKIPIF1<0,易得SKIPIF1<0,依次類推可得SKIPIF1<0由題意,SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,累加可得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,累加可得SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0;綜上:SKIPIF1<0.故選:B.2.(2022·全國·統(tǒng)考高考真題)嫦娥二號(hào)衛(wèi)星在完成探月任務(wù)后,繼續(xù)進(jìn)行深空探測,成為我國第一顆環(huán)繞太陽飛行的人造行星,為研究嫦娥二號(hào)繞日周期與地球繞日周期的比值,用到數(shù)列SKIPIF1<0:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,依此類推,其中SKIPIF1<0.則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)SKIPIF1<0,再利用數(shù)列SKIPIF1<0與SKIPIF1<0的關(guān)系判斷SKIPIF1<0中各項(xiàng)的大小,即可求解.【詳解】[方法一]:常規(guī)解法因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,得到SKIPIF1<0,同理SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0又因?yàn)镾KIPIF1<0SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0;以此類推,可得SKIPIF1<0,SKIPIF1<0,故A錯(cuò)誤;SKIPIF1<0,故B錯(cuò)誤;SKIPIF1<0,得SKIPIF1<0,故C錯(cuò)誤;SKIPIF1<0,得SKIPIF1<0,故D正確.[方法二]:特值法不妨設(shè)SKIPIF1<0則SKIPIF1<0SKIPIF1<0故D正確.3.(2022·全國·統(tǒng)考高考真題)記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和,已知SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列.(1)求SKIPIF1<0的通項(xiàng)公式;(2)證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)見解析【分析】(1)利用等差數(shù)列的通項(xiàng)公式求得SKIPIF1<0,得到SKIPIF1<0,利用和與項(xiàng)的關(guān)系得到當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,進(jìn)而得:SKIPIF1<0,利用累乘法求得SKIPIF1<0,檢驗(yàn)對(duì)于SKIPIF1<0也成立,得到SKIPIF1<0的通項(xiàng)公式SKIPIF1<0;(2)由(1)的結(jié)論,利用裂項(xiàng)求和法得到SKIPIF1<0,進(jìn)而證得.【詳解】(1)∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,整理得:SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,顯然對(duì)于SKIPIF1<0也成立,∴SKIPIF1<0的通項(xiàng)公式SKIPIF1<0;(2)SKIPIF1<0∴SKIPIF1<0SKIPIF1<0總結(jié)規(guī)律預(yù)測考向(一)規(guī)律與預(yù)測1.等差(等比)數(shù)列的定義、通項(xiàng)公式及求和公式是高考的基礎(chǔ)考點(diǎn)與高頻考點(diǎn).以小題居多,屬于容易題.
2.數(shù)列求和方法中的公式法、錯(cuò)位相減法、裂項(xiàng)相消法及分組求和法是高考的高頻考點(diǎn),以小題或解答題形式出現(xiàn),難易程度有些起伏,從趨勢看,與不等式等相結(jié)合,其難度有所增大,總體屬于中檔題.涉及數(shù)列的通項(xiàng)、遞推與不等式相結(jié)合的客觀題有所增加.
(二)本專題考向展示考點(diǎn)突破典例分析考向一分組轉(zhuǎn)化法求和【核心知識(shí)】1.等差數(shù)列的求和公式:SKIPIF1<0;2.等比數(shù)列的求和公式:SKIPIF1<0【典例分析】典例1.(2023秋·黑龍江牡丹江·高三牡丹江市第三高級(jí)中學(xué)校考階段練習(xí))已知各項(xiàng)均不相等的等差數(shù)列SKIPIF1<0的前4項(xiàng)和為10,且SKIPIF1<0是等比數(shù)列SKIPIF1<0的前3項(xiàng).(1)求SKIPIF1<0;(2)設(shè)SKIPIF1<0,求SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用等差數(shù)列的通項(xiàng)公式與等比中項(xiàng)公式求得基本量SKIPIF1<0,從而利用公式法依次求得SKIPIF1<0;(2)結(jié)合(1)中結(jié)論,利用分組求和法與裂項(xiàng)相消法即可得解.【詳解】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0成等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等比數(shù)列,所以SKIPIF1<0,則SKIPIF1<0.(2)由(1)得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.典例2.(2022秋·北京·高三統(tǒng)考階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,SKIPIF1<0,①求SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;②求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式.【答案】(1)①SKIPIF1<0;②SKIPIF1<0(2)SKIPIF1<0【分析】(1)由已知條件取n的值代入計(jì)算可得SKIPIF1<0,然后利用遞推關(guān)系,驗(yàn)證SKIPIF1<0,即為數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)由(1)可證數(shù)列SKIPIF1<0是SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,進(jìn)而求得SKIPIF1<0,利用累加法可求數(shù)列SKIPIF1<0的通項(xiàng)公式.【詳解】(1)①已知SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;②由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;(2)由(1)知SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,因此數(shù)列SKIPIF1<0是SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0也滿足上式,所以SKIPIF1<0.典例3.(2022秋·遼寧丹東·高三校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0,求數(shù)列SKIPIF1<0的前2n項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用SKIPIF1<0進(jìn)行類比作差法即可求解;(2)分組求和,等比數(shù)列求和以及等差數(shù)列求和方法即可得解.【詳解】(1)∵SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,適合上式,則數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0;(2)由題意可得,SKIPIF1<0則SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0.【規(guī)律方法】分組轉(zhuǎn)化法求和的常見類型(1)若an=bn±cn,且{bn},{cn}為等差或等比數(shù)列,可采用分組轉(zhuǎn)化法求{an}的前n項(xiàng)和.(2)通項(xiàng)公式為an=eq\b\lc\{\rc\(\a\vs4\al\co1(bn,n為奇數(shù),,cn,n為偶數(shù)))的數(shù)列,其中數(shù)列{bn},{cn}是等比數(shù)列或等差數(shù)列,可采用分組轉(zhuǎn)化法求和.考向二裂項(xiàng)相消法求和【核心知識(shí)】裂項(xiàng)相消法是指把數(shù)列和式中的各項(xiàng)分別裂開后,某些項(xiàng)可以相互抵消從而求和的方法,主要適用于eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,anan+1)))或eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,anan+2)))(其中{an}為等差數(shù)列)等形式的數(shù)列求和.【典例分析】典例4.(2023秋·湖北十堰·高三統(tǒng)考階段練習(xí))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由等差數(shù)列的通項(xiàng)公式以及等差數(shù)列的前n項(xiàng)和公式展開可求得結(jié)果;(2)由裂項(xiàng)相消求和可得結(jié)果.【詳解】(1)設(shè)數(shù)列SKIPIF1<0的公差為SKIPIF1<0,由題意可得SKIPIF1<0解得SKIPIF1<0,則SKIPIF1<0(2)由(1)可知SKIPIF1<0,則SKIPIF1<0SKIPIF1<0典例5.(2023秋·云南·高三云南師大附中??茧A段練習(xí))已知公差不為0的等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0成等差數(shù)列,且SKIPIF1<0、SKIPIF1<0、SKIPIF1<0成等比數(shù)列.(1)求SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)公式法列方程組解決即可;(2)運(yùn)用裂項(xiàng)相消解決即可.【詳解】(1)由題知,設(shè)SKIPIF1<0的公差為SKIPIF1<0,由題意得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)證明:由(1)得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.典例6.(2022秋·江西南昌·高三校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),SKIPIF1<0是其前SKIPIF1<0項(xiàng)的和.若SKIPIF1<0,且SKIPIF1<0(SKIPIF1<0).(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(或SKIPIF1<0)【分析】(1)利用SKIPIF1<0與SKIPIF1<0的關(guān)系進(jìn)行求解;(2)使用裂項(xiàng)相消法進(jìn)行求和.【詳解】(1)∵SKIPIF1<0,∴SKIPIF1<0,①SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;②SKIPIF1<0時(shí),由SKIPIF1<0,有SKIPIF1<0,兩式相減得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵數(shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0∴綜上所述,SKIPIF1<0是首項(xiàng)SKIPIF1<0,公差SKIPIF1<0的等差數(shù)列,∴SKIPIF1<0,∴數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由(1)知SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.注:結(jié)果也可以為SKIPIF1<0.【總結(jié)提升】利用裂項(xiàng)相消法求和的注意事項(xiàng)1.抵消后并不一定只剩下第一項(xiàng)和最后一項(xiàng),也有可能前面剩兩項(xiàng),后面也剩兩項(xiàng);2.將通項(xiàng)裂項(xiàng)后,有時(shí)需要調(diào)整前面的系數(shù),使裂開的兩項(xiàng)之差和系數(shù)之積與原通項(xiàng)相等.如:若{an}是等差數(shù)列,則eq\f(1,anan+1)=eq\f(1,d)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,an)-\f(1,an+1))),eq\f(1,anan+2)=eq\f(1,2d)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,an)-\f(1,an+2))).3.裂項(xiàng)相消法就是把數(shù)列的每一項(xiàng)分解,使得相加后項(xiàng)與項(xiàng)之間能夠相互抵消,但在抵消的過程中,有的是依次項(xiàng)抵消,有的是間隔項(xiàng)抵消.常見的裂項(xiàng)方式有:(1)SKIPIF1<0,特別地當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;(2),特別地當(dāng)SKIPIF1<0時(shí),;(3)(4)(5)考向三錯(cuò)位相減法求和【核心知識(shí)】錯(cuò)位相減法是在推導(dǎo)等比數(shù)列的前n項(xiàng)和公式時(shí)所用的方法,這種方法主要用于求數(shù)列{an·bn}的前n項(xiàng)和,其中{an},{bn}分別是等差數(shù)列和等比數(shù)列.【典例分析】典例7.(2022·天津·統(tǒng)考高考真題)設(shè)SKIPIF1<0是等差數(shù)列,SKIPIF1<0是等比數(shù)列,且SKIPIF1<0.(1)求SKIPIF1<0與SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,求證:SKIPIF1<0;(3)求SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析(3)SKIPIF1<0【分析】(1)利用等差等比數(shù)列的通項(xiàng)公式進(jìn)行基本量運(yùn)算即可得解;(2)由等比數(shù)列的性質(zhì)及通項(xiàng)與前n項(xiàng)和的關(guān)系結(jié)合分析法即可得證;(3)先求得SKIPIF1<0,進(jìn)而由并項(xiàng)求和可得SKIPIF1<0,再結(jié)合錯(cuò)位相減法可得解.【詳解】(1)設(shè)SKIPIF1<0公差為d,SKIPIF1<0公比為SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0(SKIPIF1<0舍去),所以SKIPIF1<0;(2)證明:因?yàn)镾KIPIF1<0所以要證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,而SKIPIF1<0顯然成立,所以SKIPIF1<0;(3)因?yàn)镾KIPIF1<0SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0所以SKIPIF1<0,則SKIPIF1<0,作差得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.典例8.(2022·浙江杭州·模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,記SKIPIF1<0,在SKIPIF1<0中每相鄰兩項(xiàng)之間都插入3個(gè)數(shù),使它們和原數(shù)列的數(shù)一起構(gòu)成一個(gè)新的正項(xiàng)等比數(shù)列SKIPIF1<0,若數(shù)列SKIPIF1<0中的第SKIPIF1<0項(xiàng)是數(shù)列SKIPIF1<0中的第SKIPIF1<0項(xiàng).(1)求數(shù)列SKIPIF1<0及SKIPIF1<0的通項(xiàng)公式.(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)題意結(jié)合等比數(shù)列的定義即可得到數(shù)列SKIPIF1<0的通項(xiàng)公式,從而得到數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)由(1)中的結(jié)論表示出SKIPIF1<0,再結(jié)合錯(cuò)位相減法計(jì)算即可得到結(jié)果.【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是首項(xiàng)為1,公比為2的等比數(shù)列,所以SKIPIF1<0.所以SKIPIF1<0.由題意知SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0.又SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.(2)SKIPIF1<0SKIPIF1<0,①SKIPIF1<0,②①-②得SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0.典例9.(2022秋·河北張家口·高三統(tǒng)考期末)已知SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0為等比數(shù)列;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)證明見解析(2)SKIPIF1<0【分析】(1)先求出SKIPIF1<0,根據(jù)SKIPIF1<0,寫出SKIPIF1<0,SKIPIF1<0,兩式相減即可得SKIPIF1<0,要證數(shù)列SKIPIF1<0為等比數(shù)列,只需證明SKIPIF1<0為一個(gè)常數(shù),將SKIPIF1<0代入即可;(2)由(1)得出數(shù)列SKIPIF1<0的通項(xiàng)公式,若求SKIPIF1<0前SKIPIF1<0項(xiàng)和,需要進(jìn)行分組求和,先利用錯(cuò)位相減求出SKIPIF1<0的前SKIPIF1<0項(xiàng)和,再求等差數(shù)列的前SKIPIF1<0項(xiàng)和,即可得SKIPIF1<0.【詳解】(1)證明:由題知SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0故SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,兩式相減可得:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0是以6為首項(xiàng),2為公比的等比數(shù)列;(2)由(1)得數(shù)列SKIPIF1<0是以6為首項(xiàng),2為公比的等比數(shù)列,所以SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,其前n項(xiàng)和為SKIPIF1<0,則SKIPIF1<0①,SKIPIF1<0②,①-②可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,綜上:SKIPIF1<0.【規(guī)律方法】1.求解此類題需掌握三個(gè)技巧:一是巧分拆,即把數(shù)列的通項(xiàng)轉(zhuǎn)化為等差數(shù)列、等比數(shù)列的通項(xiàng)的積,并求出等比數(shù)列的公比;二是構(gòu)差式,求出前n項(xiàng)和的表達(dá)式,然后乘以等比數(shù)列的公比,兩式作差;三是得結(jié)論,即根據(jù)差式的特征進(jìn)行準(zhǔn)確求和.2.運(yùn)用錯(cuò)位相減法求和時(shí)應(yīng)注意三點(diǎn):一是判斷模型,即判斷數(shù)列{an},{bn}一個(gè)為等差數(shù)列,一個(gè)為等比數(shù)列;二是錯(cuò)開位置;三是相減時(shí)一定要注意最后一項(xiàng)的符號(hào).3.用錯(cuò)位相減法求和時(shí),應(yīng)注意:(1)等比數(shù)列的公比為負(fù)數(shù)的情形;(2)在寫出“Sn”和“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”,以便準(zhǔn)確寫出“Sn-qSn”的表達(dá)式.(3)在應(yīng)用錯(cuò)位相減法求和時(shí),若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況求解.考向四數(shù)列的綜合問題【核心知識(shí)】數(shù)列與函數(shù)、不等式的綜合問題是高考命題的一個(gè)方向,此類問題突破的關(guān)鍵在于通過函數(shù)關(guān)系尋找數(shù)列的遞推關(guān)系,通過放縮進(jìn)行等式的證明.【典例分析】典例10.(2022秋·江蘇南通·高三期末)已知數(shù)列SKIPIF1<0成等比數(shù)列,SKIPIF1<0是其前SKIPIF1<0項(xiàng)的和,若SKIPIF1<0成等差數(shù)列.(1)證明:SKIPIF1<0成等差數(shù)列;(2)比較SKIPIF1<0與SKIPIF1<0的大?。?3)若SKIPIF1<0,SKIPIF1<0為大于1的奇數(shù),證明:SKIPIF1<0【答案】(1)證明見解析(2)SKIPIF1<0(3)證明見解析【分析】(1)根據(jù)等差中項(xiàng)得SKIPIF1<0,SKIPIF1<0即可;(2)作差法比較即可;(3)利用等比數(shù)列求和公式可得SKIPIF1<0,然后進(jìn)行求和即可得到答案【詳解】(1)由題知,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以公比SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0成等差數(shù)列.得證(2)由(1)得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.(3)由(1)和題意得,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.得證典例11.(2021·浙江·統(tǒng)考高考真題)已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng);(2)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,記SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)由SKIPIF1<0,結(jié)合SKIPIF1<0與SKIPIF1<0的關(guān)系,分SKIPIF1<0討論,得到數(shù)列SKIPIF1<0為等比數(shù)列,即可得出結(jié)論;(2)由SKIPIF1<0結(jié)合SKIPIF1<0的結(jié)論,利用錯(cuò)位相減法求出SKIPIF1<0,SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,分類討論分離參數(shù)SKIPIF1<0,轉(zhuǎn)化為SKIPIF1<0與關(guān)于SKIPIF1<0的函數(shù)的范圍關(guān)系,即可求解.【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0①,得SKIPIF1<0②,①SKIPIF1<0②得SKIPIF1<0SKIPIF1<0,又SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,SKIPIF1<0;(2)由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,兩式相減得SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0恒成立,即SKIPIF1<0恒成立,SKIPIF1<0時(shí)不等式恒成立;SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0;所以SKIPIF1<0.【點(diǎn)睛】易錯(cuò)點(diǎn)點(diǎn)睛:(1)已知SKIPIF1<0求SKIPIF1<0不要忽略SKIPIF1<0情況;(2)恒成立分離參數(shù)時(shí),要注意變量的正負(fù)零討論,如(2)中SKIPIF1<0恒成立,要對(duì)SKIPIF1<0討論,還要注意SKIPIF1<0時(shí),分離參數(shù)不等式要變號(hào).典例12.(2022·云南昆明·昆明一中??寄M預(yù)測)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0;(2)設(shè)SKIPIF1<0,記數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,求使得SKIPIF1<0恒成立的m的最小整數(shù).【答案】(1)SKIPIF1<0(2)2【分析】(1)依據(jù)題給條件,利用等差數(shù)列前n項(xiàng)和公式即可求得SKIPIF1<0;(2)先利用裂項(xiàng)相消法求得數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,再依據(jù)題給條件列出關(guān)于m的不等式,解之即可求得m的最小整數(shù)【詳解】(1)由SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(2)由(1)可得,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由SKIPIF1<0恒成立,可得SKIPIF1<0,解之得SKIPIF1<0則當(dāng)SKIPIF1<0時(shí),使得SKIPIF1<0恒成立的m的最小整數(shù)為2當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,綜上,使得SKIPIF1<0恒成立的m的最小整數(shù)為2典例13.(2022秋·天津南開·高三南開中學(xué)??茧A段練習(xí))已知公差不為零的等差數(shù)列SKIPIF1<0,SKIPIF1<0為等比數(shù)列,且滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用通項(xiàng)公式以及等比中項(xiàng)公式即可求解;(2)利用錯(cuò)位相減法求和,再利用導(dǎo)數(shù)討論單調(diào)性求最值即可.【詳解】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0.SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0①,SKIPIF1<0②,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0③,由①②③解得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(2)由(1)知:SKIPIF1<0所以:SKIPIF1<0,即:SKIPIF1<0①,所以:SKIPIF1<0②,由①SKIPIF1<0②得:SKIPIF1<0,SKIPIF1<0化簡得:SKIPIF1<0SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0解得:SKIPIF1<0SKIPIF1<0,所以,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,又SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.所以,若不等式SKIPIF1<0恒成立,實(shí)數(shù)SKIPIF1<0的取值范圍為:SKIPIF1<0.典例14.(2022秋·天津和平·高三耀華中學(xué)校考階段練習(xí))已知數(shù)列SKIPIF1<0是公差為2的等差數(shù)列,其前8項(xiàng)的和為64.?dāng)?shù)列SKIPIF1<0是公比大于0的等比數(shù)列,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)記SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0;(3)設(shè)SKIPIF1<0,記SKIPIF1<0,證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【答案】(1)SKIPIF1<0;SKIPIF1<0(2)SKIPIF1<0(3)證明見解析【分析】(1)根據(jù)等差、等比數(shù)列的通項(xiàng)公式、前SKIPIF1<0項(xiàng)和公式進(jìn)行計(jì)算可求出結(jié)果;(2)根據(jù)SKIPIF1<0進(jìn)行并項(xiàng)求和可求出結(jié)果;(3)轉(zhuǎn)化為證明SKIPIF1<0,根據(jù)SKIPIF1<0進(jìn)行裂項(xiàng)求和可證明不等式成立.【詳解】(1)因?yàn)镾KIPIF1<0是公差為2的等差數(shù)列,且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0;設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(舍去)或SKIPIF1<0,所以SKIPIF1<0.(2)由(1)得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.(3)由(1)可知:SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,所以要證明原不等式成立,只需證明:SKIPIF1<0成立.當(dāng)SKIPIF1<0時(shí),左邊=1,右邊=1,左邊=右邊.當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,即SKIPIF1<0.所以當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,于是,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立.綜上所述:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:通過放縮得到SKIPIF1<0,并利用它進(jìn)行裂項(xiàng)求和是解題關(guān)鍵.【總結(jié)提升】1.數(shù)列與不等式的綜合應(yīng)用是高考命題的一個(gè)重要方向.此類問題的常見類型及求解策略:(1)依據(jù)數(shù)列的單調(diào)性解答數(shù)列中的最值問題.求解策略:一是根據(jù)數(shù)列的結(jié)構(gòu)特征構(gòu)建對(duì)應(yīng)的函數(shù),利用函數(shù)的性質(zhì)、導(dǎo)數(shù)等判斷函數(shù)的單調(diào)性,從而得到數(shù)列的單調(diào)性;二是通過對(duì)數(shù)列相鄰項(xiàng)的比較(作差、作商)得到數(shù)列的單調(diào)性.(2)利用“放縮法”證明數(shù)列型不等式.求解策略:一是在求和過程中將通項(xiàng)“放縮”為“可求和的數(shù)列”;二是求和后再“放縮”.2.易錯(cuò)提醒:(1)公式an=Sn-Sn-1適用于所有數(shù)列,但易忽略n≥2這個(gè)前提.(2)數(shù)列和不等式的綜合問題,要注意條件n∈N*,求最值要注意等號(hào)成立的條件,放縮不等式要適度.考向五數(shù)列中的奇、偶項(xiàng)問題【核心知識(shí)】數(shù)列中的奇、偶項(xiàng)問題是對(duì)一個(gè)數(shù)列分成兩個(gè)新數(shù)列進(jìn)行單獨(dú)研究,利用新數(shù)列的特征(等差、等比數(shù)列或其他特征)求解原數(shù)列.【典例分析】典例15.(2021·全國·統(tǒng)考高考真題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0(1)記SKIPIF1<0,寫出SKIPIF1<0,SKIPIF1<0,并求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求SKIPIF1<0的前20項(xiàng)和.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)方法一:由題意結(jié)合遞推關(guān)系式確定數(shù)列SKIPIF1<0的特征,然后求和其通項(xiàng)公式即可;(2)方法二:分組求和,結(jié)合等差數(shù)列前SKIPIF1<0項(xiàng)和公式即可求得數(shù)列的前20項(xiàng)和.【詳解】解:(1)[方法一]【最優(yōu)解】:顯然SKIPIF1<0為偶數(shù),則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0是以2為首項(xiàng),3為公差的等差數(shù)列,于是SKIPIF1<0.[方法二]:奇偶分類討論由題意知SKIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0(SKIPIF1<0為奇數(shù))及SKIPIF1<0(SKIPIF1<0為偶數(shù))可知,數(shù)列從第一項(xiàng)起,若SKIPIF1<0為奇數(shù),則其后一項(xiàng)減去該項(xiàng)的差為1,若SKIPIF1<0為偶數(shù),則其后一項(xiàng)減去該項(xiàng)的差為2.所以SKIPIF1<0,則SKIPIF1<0.[方法三]:累加法由題意知數(shù)列SKIPIF1<0滿足SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0,數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.(2)[方法一]:奇偶分類討論SKIPIF1<0SKIPIF1<0SKIPIF1<0.[方法二]:分組求和由題意知數(shù)列SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0.所以數(shù)列SKIPIF1<0的奇數(shù)項(xiàng)是以1為首項(xiàng),3為公差的等差數(shù)列;同理,由SKIPIF1<0知數(shù)列SKIPIF1<0的偶數(shù)項(xiàng)是以2為首項(xiàng),3為公差的等差數(shù)列.從而數(shù)列SKIPIF1<0的前20項(xiàng)和為:SKIPIF1<0SKIPIF1<0.【整體點(diǎn)評(píng)】(1)方法一:由題意討論SKIPIF1<0的性質(zhì)為最一般的思路和最優(yōu)的解法;方法二:利用遞推關(guān)系式分類討論奇偶兩種情況,然后利用遞推關(guān)系式確定數(shù)列的性質(zhì);方法三:寫出數(shù)列SKIPIF1<0的通項(xiàng)公式,然后累加求數(shù)列的通項(xiàng)公式,是一種更加靈活的思路.(2)方法一:由通項(xiàng)公式分奇偶的情況求解前項(xiàng)和是一種常規(guī)的方法;方法二:分組求和是常見的數(shù)列求和的一種方法,結(jié)合等差數(shù)列前項(xiàng)和公式和分組的方法進(jìn)行求和是一種不錯(cuò)的選擇.典例16.(2022秋·廣東東莞·高三統(tǒng)考期末)已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且對(duì)于任意的SKIPIF1<0都有SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)記數(shù)列SKIPIF1<0的前n項(xiàng)中的最大值為SKIPIF1<0,最小值為SKIPIF1<0,令SKIPIF1<0,求數(shù)列SKIPIF1<0的前20項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)SKIPIF1<0可得SKIPIF1<0是以公比為SKIPIF1<0的等比數(shù)列,進(jìn)而可求解,(2)根據(jù)數(shù)列SKIPIF1<0的通項(xiàng)性質(zhì)可對(duì)SKIPIF1<0分奇偶,進(jìn)而可得SKIPIF1<0,SKIPIF1<0,分組求和即可求解.【詳解】(1)對(duì)于任意的SKIPIF1<0都有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,兩式相減得SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,進(jìn)而得SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,所以數(shù)列SKIPIF1<0是以首項(xiàng)為1,公比為SKIPIF1<0的等比數(shù)列,所以SKIPIF1<0(2)當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,且SKIPIF1<0,因此當(dāng)SKIPIF1<0為大于1的奇數(shù)時(shí),SKIPIF1<0的前n項(xiàng)中的最大值為SKIPIF1<0,最小值為SKIPIF1<0,此時(shí)SKIPIF1<0,因此當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0的前n項(xiàng)中的最大值為SKIPIF1<0,最小值為SKIPIF1<0,此時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此SKIPIF1<0的前20項(xiàng)和SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0典例17.(2022秋·天津靜海·高三靜海一中??茧A段練習(xí))已知數(shù)列SKIPIF1<0為等差數(shù)列,數(shù)列SKIPIF1<0為等比數(shù)列,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023九年級(jí)數(shù)學(xué)上冊(cè) 第4章 銳角三角函數(shù)4.1 正弦和余弦第2課時(shí) 45°60°角的正弦值及用計(jì)算器求正弦值或銳角說課稿 (新版)湘教版
- 二零二五年網(wǎng)絡(luò)直播平臺(tái)建設(shè)與運(yùn)營合同詳盡條款3篇
- 21 雪孩子 說課稿-2024-2025學(xué)年語文二年級(jí)上冊(cè)統(tǒng)編版
- 3古詩詞誦讀《春夜喜雨》說課稿2023-2024學(xué)年統(tǒng)編版語文六年級(jí)下冊(cè)
- 2025年度美容院美容院加盟店安全與衛(wèi)生管理合同3篇
- 2023-2028年中國團(tuán)餐行業(yè)市場發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃研究報(bào)告
- 2024-2025年中國智能濕度控制系統(tǒng)行業(yè)市場深度分析及投資戰(zhàn)略研究報(bào)告
- 2025年酒店預(yù)訂銷售中介合作協(xié)議模板3篇
- 2025年中國毛巾批發(fā)行業(yè)市場發(fā)展監(jiān)測及投資方向研究報(bào)告
- 2023九年級(jí)數(shù)學(xué)下冊(cè) 第27章 圓27.4 正多邊形和圓說課稿 (新版)華東師大版
- 電商運(yùn)營管理制度
- 二零二五年度一手房購房協(xié)議書(共有產(chǎn)權(quán)房購房協(xié)議)3篇
- 2025年上半年上半年重慶三峽融資擔(dān)保集團(tuán)股份限公司招聘6人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 城市公共交通運(yùn)營協(xié)議
- 內(nèi)燃副司機(jī)晉升司機(jī)理論知識(shí)考試題及答案
- 2024北京東城初二(上)期末語文試卷及答案
- 2024設(shè)計(jì)院與職工勞動(dòng)合同書樣本
- 2024年貴州公務(wù)員考試申論試題(B卷)
- 電工高級(jí)工練習(xí)題庫(附參考答案)
- 村里干零工協(xié)議書
- 2024年高考八省聯(lián)考地理適應(yīng)性試卷附答案解析
評(píng)論
0/150
提交評(píng)論