![南京傳媒學院《平面廣告設(shè)計》2021-2022學年第一學期期末試卷_第1頁](http://file4.renrendoc.com/view12/M05/2F/12/wKhkGWdQ2zuAALtnAALtEKL60Fg806.jpg)
![南京傳媒學院《平面廣告設(shè)計》2021-2022學年第一學期期末試卷_第2頁](http://file4.renrendoc.com/view12/M05/2F/12/wKhkGWdQ2zuAALtnAALtEKL60Fg8062.jpg)
![南京傳媒學院《平面廣告設(shè)計》2021-2022學年第一學期期末試卷_第3頁](http://file4.renrendoc.com/view12/M05/2F/12/wKhkGWdQ2zuAALtnAALtEKL60Fg8063.jpg)
![南京傳媒學院《平面廣告設(shè)計》2021-2022學年第一學期期末試卷_第4頁](http://file4.renrendoc.com/view12/M05/2F/12/wKhkGWdQ2zuAALtnAALtEKL60Fg8064.jpg)
![南京傳媒學院《平面廣告設(shè)計》2021-2022學年第一學期期末試卷_第5頁](http://file4.renrendoc.com/view12/M05/2F/12/wKhkGWdQ2zuAALtnAALtEKL60Fg8065.jpg)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁南京傳媒學院《平面廣告設(shè)計》
2021-2022學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴重噪聲污染的圖像中的噪聲,同時盡可能保留圖像的細節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學習的圖像去噪模型,如DnCNND.不進行任何去噪處理,保留原始噪聲圖像2、在計算機視覺的圖像修復任務(wù)中,假設(shè)圖像中有大面積的損壞或缺失區(qū)域,以下哪種方法可能更依賴于對圖像全局結(jié)構(gòu)的理解?()A.基于紋理合成的方法B.基于擴散的方法C.基于深度學習的方法D.基于樣例的方法3、計算機視覺中的圖像增強旨在改善圖像的質(zhì)量和視覺效果。假設(shè)一張低對比度、有噪聲的醫(yī)學圖像需要進行增強處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強技術(shù)最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波4、計算機視覺中的圖像配準任務(wù)是將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設(shè)要將兩張拍攝角度不同的城市風景照片進行配準。以下關(guān)于圖像配準方法的描述,哪一項是不正確的?()A.可以基于特征點匹配的方法,找到兩張圖像中的對應點,然后計算變換矩陣B.基于灰度信息的配準方法通過比較圖像的像素值來實現(xiàn)配準C.深度學習中的自監(jiān)督學習方法可以用于圖像配準,自動學習圖像之間的對應關(guān)系D.圖像配準總是能夠達到像素級別的精確對齊,不存在任何誤差5、在計算機視覺的圖像檢索任務(wù)中,根據(jù)用戶提供的圖像或特征在數(shù)據(jù)庫中查找相似的圖像。假設(shè)要從一個大型圖像庫中找到與給定圖像相似的圖片,以下關(guān)于圖像檢索方法的描述,正確的是:()A.基于圖像的顏色和紋理特征進行檢索能夠滿足所有的檢索需求B.深度學習中的卷積神經(jīng)網(wǎng)絡(luò)提取的特征在圖像檢索中不如手工設(shè)計的特征有效C.考慮圖像的語義信息和高層特征可以提高圖像檢索的準確性和相關(guān)性D.圖像檢索的速度和效率不受數(shù)據(jù)庫大小和特征維度的影響6、在計算機視覺的全景圖像生成任務(wù)中,將多幅局部圖像拼接成一幅全景圖像。假設(shè)要生成一個城市景觀的全景圖像,以下關(guān)于全景圖像生成方法的描述,哪一項是不正確的?()A.首先需要對局部圖像進行特征提取和匹配,找到它們之間的對應關(guān)系B.可以使用圖像變形和融合技術(shù)來消除拼接處的縫隙和色差C.全景圖像生成不受拍攝角度、光照條件和相機參數(shù)的影響,能夠完美拼接任何圖像D.基于深度學習的方法能夠自動學習全景圖像的生成規(guī)律,提高拼接效果7、計算機視覺中的醫(yī)學圖像分析對于疾病的診斷和治療具有重要意義。以下關(guān)于醫(yī)學圖像分析的描述,不準確的是()A.可以對X光、CT、MRI等醫(yī)學圖像進行病灶檢測、器官分割和疾病分類B.深度學習技術(shù)在醫(yī)學圖像分析中取得了顯著的成果,但也面臨數(shù)據(jù)標注困難和模型泛化能力不足的問題C.醫(yī)學圖像分析需要遵循嚴格的醫(yī)學標準和倫理規(guī)范,確保結(jié)果的準確性和可靠性D.醫(yī)學圖像分析完全依賴于計算機視覺技術(shù),醫(yī)生的經(jīng)驗和專業(yè)知識不再重要8、計算機視覺中的圖像分割任務(wù)旨在將圖像分割成不同的區(qū)域。假設(shè)要對一張風景圖片進行分割,區(qū)分天空、陸地和水面。以下關(guān)于圖像分割方法的描述,哪一項是錯誤的?()A.基于閾值的分割方法簡單快速,但對于復雜圖像效果不佳B.區(qū)域生長法從種子點開始,逐步合并相似的區(qū)域C.深度學習中的全卷積網(wǎng)絡(luò)(FCN)在圖像分割中表現(xiàn)出色,能夠生成精確的分割結(jié)果D.圖像分割的結(jié)果總是清晰明確,不存在模糊或錯誤的邊界9、計算機視覺在農(nóng)業(yè)中的應用可以幫助監(jiān)測農(nóng)作物的生長狀況。假設(shè)要通過圖像分析判斷農(nóng)作物的病蟲害程度,以下關(guān)于農(nóng)業(yè)計算機視覺應用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準確判斷病蟲害的程度B.不同農(nóng)作物品種和生長階段對病蟲害判斷的影響不大C.結(jié)合圖像的紋理、形狀和顏色等多特征,可以更準確地評估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復雜性對計算機視覺的應用沒有挑戰(zhàn)10、在目標檢測中,YOLO(YouOnlyLookOnce)算法的特點是()A.檢測速度快B.檢測精度高C.適用于小目標檢測D.對遮擋不敏感11、在計算機視覺的遙感圖像分析中,假設(shè)要從衛(wèi)星遙感圖像中提取土地利用信息,以下哪種技術(shù)可能對區(qū)分不同類型的土地覆蓋有幫助?()A.高光譜分析B.紋理分析C.形狀分析D.以上都有可能12、在計算機視覺中,目標檢測是一項重要任務(wù)。假設(shè)我們要開發(fā)一個能夠在交通場景中檢測車輛的系統(tǒng)。如果圖像中的車輛存在多種姿態(tài)、大小和光照條件的變化,以下哪種目標檢測算法可能更適合應對這種復雜情況?()A.基于傳統(tǒng)特征的檢測算法,如HOG特征結(jié)合SVM分類器B.基于深度學習的FasterR-CNN算法C.基于模板匹配的檢測算法D.基于顏色特征的檢測算法13、對于圖像的超分辨率重建任務(wù),假設(shè)要將一張低分辨率的圖像恢復為高分辨率圖像,同時保留圖像的細節(jié)和清晰度。這張低分辨率圖像可能存在模糊和失真。以下哪種方法在處理這種情況時可能表現(xiàn)更好?()A.基于插值的方法,如雙線性插值和雙三次插值B.基于深度學習的超分辨率重建模型,如SRCNNC.對低分辨率圖像進行簡單的銳化處理D.不進行任何處理,直接使用低分辨率圖像14、在計算機視覺的圖像生成任務(wù)中,假設(shè)要生成具有真實感的自然圖像。以下關(guān)于圖像生成方法的描述,正確的是:()A.生成對抗網(wǎng)絡(luò)(GAN)能夠生成逼真的圖像,但訓練過程不穩(wěn)定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質(zhì)量的圖像D.所有的圖像生成方法都能夠生成與真實世界完全一致的圖像15、在計算機視覺中,以下哪種方法常用于圖像的顯著目標檢測中的高層語義信息利用?()A.深度學習B.圖模型C.注意力機制D.以上都是二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述計算機視覺在無人駕駛中的障礙物檢測和路徑規(guī)劃。2、(本題5分)簡述計算機視覺在紡織業(yè)中的應用。3、(本題5分)描述計算機視覺在安防監(jiān)控中的作用。4、(本題5分)描述計算機視覺在影視制作中的應用。三、應用題(本大題共5個小題,共25分)1、(本題5分)利用深度學習算法,對不同種類的糕點圖像進行分類。2、(本題5分)運用計算機視覺技術(shù),對飛機機身的表面缺陷進行檢測。3、(本題5分)基于計算機視覺的智能交通信號燈控制系統(tǒng),根據(jù)實時交通流量調(diào)整信號燈時長。4、(本題5分)基于深度學習,實現(xiàn)對羽毛球比賽中發(fā)球是否違規(guī)的檢測。5、(本題5分)開發(fā)一個基于計算機視覺的手寫數(shù)字識別系統(tǒng)。四、分析題(本大題共4個小題,共40分)1、(本題10分)研究某品牌的產(chǎn)品包裝結(jié)構(gòu)設(shè)計,分析其如何在保護產(chǎn)品的同時,通過創(chuàng)新的結(jié)構(gòu)設(shè)計提升用戶的使用體驗和品牌形象。2、(本題10分)解析某食品品牌的外賣包裝設(shè)計,探討其如何通過色彩、圖形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學生會宣傳部個人工作計劃
- 銀行話務(wù)員個人工作總結(jié)
- 教育年度工作計劃范文
- 商場物業(yè)管理服務(wù)合同范本
- 政府采購項目招標代理委托協(xié)議書范本
- 升降車租賃合同范本
- 衛(wèi)生保潔綠化服務(wù)合同范本
- 球墨鑄鐵井蓋采購合同范本
- 廣西藝術(shù)學院《小學語文課程與教學一》2023-2024學年第二學期期末試卷
- 甘肅衛(wèi)生職業(yè)學院《循環(huán)流化床機組運行與事故分析》2023-2024學年第二學期期末試卷
- GB/T 25922-2023封閉管道中流體流量的測量用安裝在充滿流體的圓形截面管道中的渦街流量計測量流量
- 培訓-責任心課件
- 最高人民法院婚姻法司法解釋(二)的理解與適用
- 關(guān)于醫(yī)保應急預案
- 安徽杭富固廢環(huán)保有限公司10萬噸工業(yè)廢物(無機類)資源化利用及無害化處置項目環(huán)境影響報告書
- 新人教版五年級上冊數(shù)學應用題大全doc
- 商業(yè)綜合體市場調(diào)研報告
- GB/T 42096-2022飛機耐火電纜性能要求
- 2022年版義務(wù)教育勞動課程標準學習培訓解讀課件筆記
- 2022年中國止血材料行業(yè)概覽:發(fā)展現(xiàn)狀對比分析研究報告(摘要版) -頭豹
- 優(yōu)秀分包商評選評分標準
評論
0/150
提交評論