新高考數(shù)學(xué)一輪復(fù)習(xí) 函數(shù)專項(xiàng)重難點(diǎn)突破專題04 函數(shù)的解析式(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 函數(shù)專項(xiàng)重難點(diǎn)突破專題04 函數(shù)的解析式(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 函數(shù)專項(xiàng)重難點(diǎn)突破專題04 函數(shù)的解析式(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 函數(shù)專項(xiàng)重難點(diǎn)突破專題04 函數(shù)的解析式(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 函數(shù)專項(xiàng)重難點(diǎn)突破專題04 函數(shù)的解析式(解析版)_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題04函數(shù)的解析式考點(diǎn)一待定系數(shù)法一、單選題1.已知冪函數(shù)f(x)=xα(α為常數(shù))的圖象經(jīng)過點(diǎn)SKIPIF1<0,則f(9)=(

)A.SKIPIF1<0B.SKIPIF1<0C.3 D.SKIPIF1<0【解析】由題意f(2)=2α=SKIPIF1<0,所以α=SKIPIF1<0,所以f(x)=SKIPIF1<0,所以f(9)=SKIPIF1<0=3.故選:C2.若二次函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的表達(dá)式為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】設(shè)SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0又∵SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:D.3.二次函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0的最大值是8,此二次函數(shù)的解析式為SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】根據(jù)題意,由SKIPIF1<0得:SKIPIF1<0的對稱軸為SKIPIF1<0,設(shè)二次函數(shù)為SKIPIF1<0,因SKIPIF1<0的最大值是8,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即二次函數(shù)SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,解得:SKIPIF1<0,則二次函數(shù)SKIPIF1<0,故選:A.二、多選題4.設(shè)SKIPIF1<0都是定義域?yàn)镾KIPIF1<0的單調(diào)函數(shù),且對于任意SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】因?yàn)镾KIPIF1<0是SKIPIF1<0上的單調(diào)函數(shù),且對于任意SKIPIF1<0,所以SKIPIF1<0,其中SKIPIF1<0為常數(shù),即SKIPIF1<0,SKIPIF1<0;又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0;由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0;所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,所以A錯(cuò)誤,B正確;由SKIPIF1<0可知,SKIPIF1<0恒成立;即C正確;由函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0可知,SKIPIF1<0不一定成立,故D錯(cuò)誤.故選:BC三、填空題5.已知一次函數(shù)f(x)滿足f(f(x))=3x+2,則f(x)的解析式為_________【解析】設(shè)SKIPIF1<0,則SKIPIF1<0于是有SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0所以SKIPIF1<0或SKIPIF1<0.6.SKIPIF1<0恒過定點(diǎn)P,P在冪函數(shù)SKIPIF1<0圖象上,SKIPIF1<0______.【解析】設(shè)點(diǎn)SKIPIF1<0,由1的對數(shù)恒為0,所以SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0四、雙空題7.已知函數(shù)SKIPIF1<0對任意SKIPIF1<0滿足:SKIPIF1<0,二次函數(shù)SKIPIF1<0滿足:SKIPIF1<0且SKIPIF1<0.則SKIPIF1<0___________,SKIPIF1<0___________.【解析】(1)SKIPIF1<0①,用SKIPIF1<0代替上式中的SKIPIF1<0,得SKIPIF1<0②,聯(lián)立①②,可得SKIPIF1<0;設(shè)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0,SKIPIF1<0考點(diǎn)二換元法一、單選題1.已知SKIPIF1<0,則SKIPIF1<0的解析式為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】令SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故選:C.2.若函數(shù)SKIPIF1<0是SKIPIF1<0上的單調(diào)函數(shù),且對任意實(shí)數(shù)SKIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.0【解析】∵對任意實(shí)數(shù)SKIPIF1<0,都有SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0,∴SKIPIF1<0,∵函數(shù)SKIPIF1<0是SKIPIF1<0上的單調(diào)函數(shù),解得SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0.故選:C.3.已知SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.1 C.1或SKIPIF1<0 D.1或SKIPIF1<0【解析】由題意:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,那么SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,故得函數(shù)SKIPIF1<0的表達(dá)式為SKIPIF1<0,令SKIPIF1<0,解方程得SKIPIF1<0或SKIPIF1<0故選:D.4.已知函數(shù)SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】令SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0.故選:B.5.設(shè)SKIPIF1<0是定義域?yàn)镽的單調(diào)函數(shù),且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】令SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0是定義域?yàn)镽的單調(diào)函數(shù),所以t為常數(shù),即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.故選:B6.已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0單調(diào)遞增,且對任意SKIPIF1<0恒有SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.4【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,方程等價(jià)為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0滿足方程,∵函數(shù)SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0值唯一,∴SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0,故函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0.故選:B.二、填空題7.已知SKIPIF1<0,則SKIPIF1<0的解析式為______.【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.8.已知SKIPIF1<0,則SKIPIF1<0______.【解析】由題意得,SKIPIF1<0,令SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0.考點(diǎn)三配湊法一、單選題1.已知SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由于SKIPIF1<0,所以SKIPIF1<0.故選:B2.已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的解析式為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】SKIPIF1<0,所以SKIPIF1<0,故選:A.3.若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,故選:D4.已知SKIPIF1<0,則SKIPIF1<0的解析式為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:C.5.若函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.從而SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,且最小值為SKIPIF1<0.故選:D二、多選題6.已知SKIPIF1<0且SKIPIF1<0,則實(shí)數(shù)a的值為(

)A.SKIPIF1<0 B.0 C.1 D.2【解析】因?yàn)镾KIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0.故選:AC三、填空題7.若SKIPIF1<0,則SKIPIF1<0______.【解析】SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.考點(diǎn)四構(gòu)造方程組法一、單選題1.已知函數(shù)SKIPIF1<0的定義域?yàn)镽,對任意SKIPIF1<0均滿足:SKIPIF1<0則函數(shù)SKIPIF1<0解析式為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由SKIPIF1<0,可得SKIPIF1<0①,又SKIPIF1<0②,①+②得:SKIPIF1<0,解得SKIPIF1<0,故選:A.2.已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【解析】分別令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:A3.已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】因?yàn)镾KIPIF1<0①,所以SKIPIF1<0②,SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:C.4.若函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.0 B.1 C.2 D.3【解析】由SKIPIF1<0①,得SKIPIF1<0②,SKIPIF1<0①得SKIPIF1<0③,②-③得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號成立).綜上所述,SKIPIF1<0的最大值為SKIPIF1<0.故選:B5.若定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,用SKIPIF1<0換SKIPIF1<0,得SKIPIF1<0,聯(lián)立解得SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是以SKIPIF1<0為周期的函數(shù).SKIPIF1<0.故選:C二、填空題6.若對于任意實(shí)數(shù)x都有SKIPIF1<0,則f(x)=_________【解析】∵對于任意實(shí)數(shù)x都有SKIPIF1<0,∴SKIPIF1<0可得SKIPIF1<0.7.已知對任意的實(shí)數(shù)a均有SKIPIF1<0成立,則函數(shù)SKIPIF1<0的解析式為________.【解析】由SKIPIF1<0,①得SKIPIF1<0,即SKIPIF1<0,②SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.考點(diǎn)五利用奇偶性一、單選題1.已知SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0.故選:B.2.已知SKIPIF1<0是定義在R上的奇函數(shù),當(dāng)SKIPIF1<0時(shí)SKIPIF1<0則SKIPIF1<0在R上的表達(dá)式是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,結(jié)合已知解析式知:SKIPIF1<0.故選:D3.已知函數(shù)SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】因?yàn)镾KIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),所以SKIPIF1<0,SKIPIF1<0.所以,SKIPIF1<0,即SKIPIF1<0,因此,SKIPIF1<0.故選:D.二、填空題4.已知函數(shù)SKIPIF1<0的圖象關(guān)于原點(diǎn)對稱,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0處的切線方程為______.【解析】由題可知函數(shù)SKIPIF1<0為奇函數(shù),令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,化簡得SKIPIF1<0.5.已知奇函數(shù)SKIPIF1<0則SKIPIF1<0__________.【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.6.若定義在R上的偶函數(shù)SKIPIF1<0和奇函數(shù)SKIPIF1<0滿足SKIPIF1<0.則SKIPIF1<0_______.【解析】由題意SKIPIF1<0,SKIPIF1<0,則由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0由SKIPIF1<0,可得SKIPIF1<07.已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則不等式SKIPIF1<0的解集為______.【解析】①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不成立;③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0;綜上所述:SKIPIF1<0.三、解答題8.已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求SKIPIF1<0的解析式:(2)若方程SKIPIF1<0有3個(gè)不同的解,求k的取值范圍.【解析】(1)函數(shù)SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論