版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
甘肅省白銀市第九中學2025屆高考考前模擬數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的導函數(shù)為,記,,…,N.若,則()A. B. C. D.2.寧波古圣王陽明的《傳習錄》專門講過易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.3.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件4.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.5.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于6.波羅尼斯(古希臘數(shù)學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.7.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區(qū)進行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.58.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.9.已知是虛數(shù)單位,若,則()A. B.2 C. D.310.已知是等差數(shù)列的前項和,若,,則()A.5 B.10 C.15 D.2011.過雙曲線左焦點的直線交的左支于兩點,直線(是坐標原點)交的右支于點,若,且,則的離心率是()A. B. C. D.12.已知展開式的二項式系數(shù)和與展開式中常數(shù)項相等,則項系數(shù)為()A.10 B.32 C.40 D.80二、填空題:本題共4小題,每小題5分,共20分。13.已知半徑為的圓周上有一定點,在圓周上等可能地任意取一點與點連接,則所得弦長介于與之間的概率為__________.14.已知數(shù)列滿足:,,若對任意的正整數(shù)均有,則實數(shù)的最大值是_____.15.已知,如果函數(shù)有三個零點,則實數(shù)的取值范圍是____________16.將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個組的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,直線與拋物線:交于,兩點,且當時,.(1)求的值;(2)設(shè)線段的中點為,拋物線在點處的切線與的準線交于點,證明:軸.18.(12分)已知函數(shù),的最大值為.求實數(shù)b的值;當時,討論函數(shù)的單調(diào)性;當時,令,是否存在區(qū)間,,使得函數(shù)在區(qū)間上的值域為?若存在,求實數(shù)k的取值范圍;若不存在,請說明理由.19.(12分)已知函數(shù),函數(shù)().(1)討論的單調(diào)性;(2)證明:當時,.(3)證明:當時,.20.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個條件中選一個,補充到上面問題中,并完成解答.)21.(12分)在中,角的對邊分別為,已知.(1)求角的大??;(2)若,求的面積.22.(10分)某公園準備在一圓形水池里設(shè)置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心為的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞.(1)若當時,,求此時的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
通過計算,可得,最后計算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點睛】本題考查導數(shù)的計算以及不完全歸納法的應用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.2、B【解析】
根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點睛】本題主要考查古典概型的概率,還考查了運算求解的能力,屬于基礎(chǔ)題.3、D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應用,屬于基礎(chǔ)題4、B【解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時不能輸出,繼續(xù)循環(huán);第二步:,此時不能輸出,繼續(xù)循環(huán);第三步:,此時不能輸出,繼續(xù)循環(huán);第四步:,此時不能輸出,繼續(xù)循環(huán);第五步:,此時不能輸出,繼續(xù)循環(huán);第六步:,此時要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于常考題型.5、D【解析】
試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論.6、D【解析】
求得定點M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.7、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。?;A(甲,乙)B(丁)C(丙);A(甲,丙)B(?。〤(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.8、B【解析】
根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關(guān)于的等式,即可得出結(jié)果.【詳解】由圖象可得,函數(shù)的最小正周期為,,,則,,取,,則,,,可得,當時,.故選:B.【點睛】本題考查利用圖象求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.9、A【解析】
直接將兩邊同時乘以求出復數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數(shù)的運算及其模的求法,是基礎(chǔ)題.10、C【解析】
利用等差通項,設(shè)出和,然后,直接求解即可【詳解】令,則,,∴,,∴.【點睛】本題考查等差數(shù)列的求和問題,屬于基礎(chǔ)題11、D【解析】
如圖,設(shè)雙曲線的右焦點為,連接并延長交右支于,連接,設(shè),利用雙曲線的幾何性質(zhì)可以得到,,結(jié)合、可求離心率.【詳解】如圖,設(shè)雙曲線的右焦點為,連接,連接并延長交右支于.因為,故四邊形為平行四邊形,故.又雙曲線為中心對稱圖形,故.設(shè),則,故,故.因為為直角三角形,故,解得.在中,有,所以.故選:D.【點睛】本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構(gòu)造關(guān)于的方程,本題屬于難題.12、D【解析】
根據(jù)二項式定理通項公式可得常數(shù)項,然后二項式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當時,常數(shù)項為又展開式的二項式系數(shù)和為由所以當時,所以項系數(shù)為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】在圓上其他位置任取一點B,設(shè)圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.14、2【解析】
根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達式的取值分析出,再用數(shù)學歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當時,,不滿足對任意的正整數(shù)均有.所以.當時,證明:對任意的正整數(shù)都有.當時,成立.假設(shè)當時結(jié)論成立,即,則,即結(jié)論對也成立.由數(shù)學歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實數(shù)的最大值是2.故答案為:2【點睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時注意結(jié)合參數(shù)的范圍問題進行分析.屬于難題.15、【解析】
首先把零點問題轉(zhuǎn)化為方程問題,等價于有三個零點,兩側(cè)開方,可得,即有三個零點,再運用函數(shù)的單調(diào)性結(jié)合最值即可求出參數(shù)的取值范圍.【詳解】若函數(shù)有三個零點,即零點有,顯然,則有,可得,即有三個零點,不妨令,對于,函數(shù)單調(diào)遞增,,,所以函數(shù)在區(qū)間上只有一解,對于函數(shù),,解得,,解得,,解得,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,,當時,,當時,,此時函數(shù)若有兩個零點,則有,綜上可知,若函數(shù)有三個零點,則實數(shù)的取值范圍是.故答案為:【點睛】本題考查了函數(shù)零點的零點,恰當?shù)拈_方,轉(zhuǎn)化為函數(shù)有零點問題,注意恰有三個零點條件的應用,根據(jù)函數(shù)的最值求解參數(shù)的范圍,屬于難題.16、【解析】
先求出總的基本事件數(shù),再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數(shù),然后根據(jù)古典概型求解.【詳解】6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料的基本事件總數(shù)共有個,甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個數(shù)有:個,所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【點睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)見解析【解析】
(1)設(shè),,聯(lián)立直線和拋物線方程,得,寫出韋達定理,根據(jù)弦長公式,即可求出;(2)由,得,根據(jù)導數(shù)的幾何意義,求出拋物線在點點處切線方程,進而求出,即可證出軸.【詳解】解:(1)設(shè),,將直線代入中整理得:,∴,,∴,解得:.(2)同(1)假設(shè),,由,得,從而拋物線在點點處的切線方程為,即,令,得,由(1)知,從而,這表明軸.【點睛】本題考查直線與拋物線的位置關(guān)系,涉及聯(lián)立方程組、韋達定理、弦長公式以及利用導數(shù)求切線方程,考查轉(zhuǎn)化思想和計算能力.18、(1);(2)時,在單調(diào)增;時,在單調(diào)遞減,在單調(diào)遞增;時,同理在單調(diào)遞減,在單調(diào)遞增;(3)不存在.【解析】分析:(1)利用導數(shù)研究函數(shù)的單調(diào)性,可得當時,取得極大值,也是最大值,由,可得結(jié)果;(2)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(3)假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個不相等的實根,進而可得結(jié)果.詳解:(1)由題意得,令,解得,當時,,函數(shù)單調(diào)遞增;當時,,函數(shù)單調(diào)遞減.所以當時,取得極大值,也是最大值,所以,解得.(2)的定義域為.①即,則,故在單調(diào)增②若,而,故,則當時,;當及時,故在單調(diào)遞減,在單調(diào)遞增.③若,即,同理在單調(diào)遞減,在單調(diào)遞增(3)由(1)知,所以,令,則對恒成立,所以在區(qū)間內(nèi)單調(diào)遞增,所以恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增.假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個不相等的實根,即方程在區(qū)間內(nèi)是否存在兩個不相等的實根,令,,則,設(shè),,則對恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,故恒成立,所以,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以方程在區(qū)間內(nèi)不存在兩個不相等的實根.綜上所述,不存在區(qū)間,使得函數(shù)在區(qū)間上的值域是.點睛:本題主要考查利用導數(shù)判斷函數(shù)的單調(diào)性以及函數(shù)的最值值,屬于難題.求函數(shù)極值、最值的步驟:(1)確定函數(shù)的定義域;(2)求導數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數(shù)值與極值的大小.19、(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】
(1)求出的定義域,導函數(shù),對參數(shù)、分類討論得到答案.(2)設(shè)函數(shù),求導說明函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域為,,當,時,,則在上單調(diào)遞增;當,時,令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增;當,時,,則在上單調(diào)遞減;當,時,令,得,令,得,則在上單調(diào)遞增,在上單調(diào)遞減;(2)證明:設(shè)函數(shù),則.因為,所以,,則,從而在上單調(diào)遞減,所以,即.(3)證明:當時,.由(1)知,,所以,即.當時,,,則,即,又,所以,即.【點睛】本題考查利用導數(shù)研究含參函數(shù)的單調(diào)性,利用導數(shù)證明不等式,屬于難題.20、見解析【解析】
選擇①時:,,計算,根據(jù)正弦定理得到,計算面積得到答案;選擇②時,,,故,為鈍角,故無解;選擇③時,,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計算面積得到答案.【詳解】選擇①時:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物業(yè)買賣擔保合同
- 高職班主任工作計劃范文
- 七年級教學計劃三篇
- 心理健康工作計劃
- 師德規(guī)范學習心得體會
- 游藝機項目可行性研究報告
- 初中數(shù)學教師年度考核總結(jié)
- 幼兒園大班班會活動教案
- 公司經(jīng)理述職報告三篇
- 小升初自我鑒定合集12篇
- 森林草原防火工作培訓課件
- 2023年婦科門診總結(jié)及計劃
- 方大重整海航方案
- 河北省秦皇島市昌黎縣2023-2024學年八年級上學期期末數(shù)學試題
- 礦山治理專項研究報告范文
- 國家開放大學2023年7月期末統(tǒng)一試《11124流行病學》試題及答案-開放本科
- 貨運安全生產(chǎn)管理制度
- 幼兒園中班體育《我們愛運動》+課件
- 郭錫良《古代漢語》課件
- 外研版四年級英語下冊(一年級起點)全冊完整課件
- 防止電力生產(chǎn)事故的-二十五項重點要求(2023版)
評論
0/150
提交評論