2025屆天津市軍糧城第二中學(xué)高考數(shù)學(xué)四模試卷含解析_第1頁(yè)
2025屆天津市軍糧城第二中學(xué)高考數(shù)學(xué)四模試卷含解析_第2頁(yè)
2025屆天津市軍糧城第二中學(xué)高考數(shù)學(xué)四模試卷含解析_第3頁(yè)
2025屆天津市軍糧城第二中學(xué)高考數(shù)學(xué)四模試卷含解析_第4頁(yè)
2025屆天津市軍糧城第二中學(xué)高考數(shù)學(xué)四模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆天津市軍糧城第二中學(xué)高考數(shù)學(xué)四模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知角的終邊經(jīng)過點(diǎn)P(),則sin()=A. B. C. D.2.設(shè)函數(shù),則使得成立的的取值范圍是().A. B.C. D.3.以下兩個(gè)圖表是2019年初的4個(gè)月我國(guó)四大城市的居民消費(fèi)價(jià)格指數(shù)(上一年同月)變化圖表,則以下說法錯(cuò)誤的是()(注:圖表一每個(gè)城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個(gè)月份的條形圖從左到右四個(gè)城市依次是北京、天津、上海、重慶)A.3月份四個(gè)城市之間的居民消費(fèi)價(jià)格指數(shù)與其它月份相比增長(zhǎng)幅度較為平均B.4月份僅有三個(gè)城市居民消費(fèi)價(jià)格指數(shù)超過102C.四個(gè)月的數(shù)據(jù)顯示北京市的居民消費(fèi)價(jià)格指數(shù)增長(zhǎng)幅度波動(dòng)較小D.僅有天津市從年初開始居民消費(fèi)價(jià)格指數(shù)的增長(zhǎng)呈上升趨勢(shì)4.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)()A. B. C. D.5.已知集合,則()A. B.C. D.6.若函數(shù)函數(shù)只有1個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.7.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立8.函數(shù)的圖象大致是()A. B.C. D.9.已知拋物線:()的焦點(diǎn)為,為該拋物線上一點(diǎn),以為圓心的圓與的準(zhǔn)線相切于點(diǎn),,則拋物線方程為()A. B. C. D.10.復(fù)數(shù)()A. B. C.0 D.11.已知函數(shù)滿足,設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.用電腦每次可以從區(qū)間內(nèi)自動(dòng)生成一個(gè)實(shí)數(shù),且每次生成每個(gè)實(shí)數(shù)都是等可能性的.若用該電腦連續(xù)生成3個(gè)實(shí)數(shù),則這3個(gè)實(shí)數(shù)都小于的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)、滿足,且可行域表示的區(qū)域?yàn)槿切?,則實(shí)數(shù)的取值范圍為______,若目標(biāo)函數(shù)的最小值為-1,則實(shí)數(shù)等于______.14.的展開式中,的系數(shù)為_______(用數(shù)字作答).15.已知三棱錐的四個(gè)頂點(diǎn)都在球O的球面上,,,,,E,F(xiàn)分別為,的中點(diǎn),,則球O的體積為______.16.已知點(diǎn)是拋物線的焦點(diǎn),,是該拋物線上的兩點(diǎn),若,則線段中點(diǎn)的縱坐標(biāo)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.18.(12分)已知均為正實(shí)數(shù),函數(shù)的最小值為.證明:(1);(2).19.(12分)傳染病的流行必須具備的三個(gè)基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個(gè)環(huán)節(jié)必須同時(shí)存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識(shí)和防控情況,用分層抽樣的方法從全體居民中抽出一個(gè)容量為100的樣本,統(tǒng)計(jì)樣本中每個(gè)人出行是否會(huì)佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認(rèn)為是否會(huì)佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計(jì)總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82820.(12分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對(duì)于函數(shù)的圖象上兩點(diǎn),存在,使得函數(shù)的圖象在處的切線.求證:.21.(12分)如圖1,四邊形是邊長(zhǎng)為2的菱形,,為的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點(diǎn)到平面的距離.22.(10分)已知橢圓C:()的左、右焦點(diǎn)分別為,,離心率為,且過點(diǎn).(1)求橢圓C的方程;(2)過左焦點(diǎn)的直線l與橢圓C交于不同的A,B兩點(diǎn),若,求直線l的斜率k.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項(xiàng).2、B【解析】

由奇偶性定義可判斷出為偶函數(shù),由單調(diào)性的性質(zhì)可知在上單調(diào)遞增,由此知在上單調(diào)遞減,從而將所求不等式化為,解絕對(duì)值不等式求得結(jié)果.【詳解】由題意知:定義域?yàn)椋?,為偶函?shù),當(dāng)時(shí),,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則在上單調(diào)遞減,由得:,解得:或,的取值范圍為.故選:.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題;奇偶性的作用是能夠確定對(duì)稱區(qū)間的單調(diào)性,單調(diào)性的作用是能夠?qū)⒑瘮?shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,進(jìn)而化簡(jiǎn)不等式.3、D【解析】

采用逐一驗(yàn)證法,根據(jù)圖表,可得結(jié)果.【詳解】A正確,從圖表二可知,3月份四個(gè)城市的居民消費(fèi)價(jià)格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費(fèi)價(jià)格指數(shù)低于102C正確,從圖表一中可知,只有北京市4個(gè)月的居民消費(fèi)價(jià)格指數(shù)相差不大D錯(cuò)誤,從圖表一可知上海市也是從年初開始居民消費(fèi)價(jià)格指數(shù)的增長(zhǎng)呈上升趨勢(shì)故選:D【點(diǎn)睛】本題考查圖表的認(rèn)識(shí),審清題意,細(xì)心觀察,屬基礎(chǔ)題.4、C【解析】

根據(jù)準(zhǔn)線的方程寫出拋物線的標(biāo)準(zhǔn)方程,再對(duì)照系數(shù)求解即可.【詳解】因?yàn)闇?zhǔn)線方程為,所以拋物線方程為,所以,即.故選:C【點(diǎn)睛】本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.5、C【解析】

由題意和交集的運(yùn)算直接求出.【詳解】∵集合,∴.故選:C.【點(diǎn)睛】本題考查了集合的交集運(yùn)算.集合進(jìn)行交并補(bǔ)運(yùn)算時(shí),常借助數(shù)軸求解.注意端點(diǎn)處是實(shí)心圓還是空心圓.6、C【解析】

轉(zhuǎn)化有1個(gè)零點(diǎn)為與的圖象有1個(gè)交點(diǎn),求導(dǎo)研究臨界狀態(tài)相切時(shí)的斜率,數(shù)形結(jié)合即得解.【詳解】有1個(gè)零點(diǎn)等價(jià)于與的圖象有1個(gè)交點(diǎn).記,則過原點(diǎn)作的切線,設(shè)切點(diǎn)為,則切線方程為,又切線過原點(diǎn),即,將,代入解得.所以切線斜率為,所以或.故選:C【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)零點(diǎn)問題中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.7、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點(diǎn):全稱命題.8、C【解析】

根據(jù)函數(shù)奇偶性可排除AB選項(xiàng);結(jié)合特殊值,即可排除D選項(xiàng).【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項(xiàng)A,B;又∵當(dāng)時(shí),,故選:C.【點(diǎn)睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.9、C【解析】

根據(jù)拋物線方程求得點(diǎn)的坐標(biāo),根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準(zhǔn)線相切于點(diǎn),根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.10、C【解析】略11、B【解析】

結(jié)合函數(shù)的對(duì)應(yīng)性,利用充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)的對(duì)應(yīng)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.12、C【解析】

由幾何概型的概率計(jì)算,知每次生成一個(gè)實(shí)數(shù)小于1的概率為,結(jié)合獨(dú)立事件發(fā)生的概率計(jì)算即可.【詳解】∵每次生成一個(gè)實(shí)數(shù)小于1的概率為.∴這3個(gè)實(shí)數(shù)都小于1的概率為.故選:C.【點(diǎn)睛】本題考查獨(dú)立事件同時(shí)發(fā)生的概率,考查學(xué)生基本的計(jì)算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點(diǎn)時(shí),此時(shí),直線:,與:的交點(diǎn)為,該點(diǎn)也在直線:上,故,故答案為:;.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法,屬于基礎(chǔ)題.14、60【解析】

根據(jù)二項(xiàng)式定理展開式通項(xiàng),即可求得的系數(shù).【詳解】因?yàn)椋?,則所求項(xiàng)的系數(shù)為.故答案為:60【點(diǎn)睛】本題考查了二項(xiàng)展開式通項(xiàng)公式的應(yīng)用,指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.15、【解析】

可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計(jì)算可得.【詳解】解:,,,因?yàn)闉榈闹悬c(diǎn),所以為的外心,因?yàn)?,所以點(diǎn)在內(nèi)的投影為的外心,所以平面,平面,所以,所以,又球心在上,設(shè),則,所以,所以球O體積,.故答案為:【點(diǎn)睛】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計(jì)算能力,屬于中檔題.16、2【解析】

運(yùn)用拋物線的定義將拋物線上的點(diǎn)到焦點(diǎn)距離等于到準(zhǔn)線距離,然后求解結(jié)果.【詳解】拋物線的標(biāo)準(zhǔn)方程為:,則拋物線的準(zhǔn)線方程為,設(shè),,則,所以,則線段中點(diǎn)的縱坐標(biāo)為.故答案為:【點(diǎn)睛】本題考查了拋物線的定義,由拋物線定義將點(diǎn)到焦點(diǎn)距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線距離,需要熟練掌握定義,并能靈活運(yùn)用,本題較為基礎(chǔ).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)的遞減區(qū)間為和【解析】

(1)化簡(jiǎn)函數(shù),代入,計(jì)算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點(diǎn)睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.18、(1)證明見解析(2)證明見解析【解析】

(1)運(yùn)用絕對(duì)值不等式的性質(zhì),注意等號(hào)成立的條件,即可求得最小值,再運(yùn)用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結(jié)論,注意等號(hào)成立的條件.【詳解】(1)由題意,則函數(shù),又函數(shù)的最小值為,即,由柯西不等式得,當(dāng)且僅當(dāng)時(shí)取“=”.故.(2)由題意,利用基本不等式可得,,,(以上三式當(dāng)且僅當(dāng)時(shí)同時(shí)取“=”)由(1)知,,所以,將以上三式相加得即.【點(diǎn)睛】本題主要考查絕對(duì)值不等式、柯西不等式等基礎(chǔ)知識(shí),考查運(yùn)算能力,屬于中檔題.19、(1)有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)【解析】

(1)根據(jù)列聯(lián)表和獨(dú)立性檢驗(yàn)的公式計(jì)算出觀測(cè)值,從而由參考數(shù)據(jù)作出判斷.(2)因?yàn)闃颖局谐鲂胁淮骺谡值木用裼?0人,其中年輕人有10人,用樣本估計(jì)總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據(jù)獨(dú)立重復(fù)事件的概率公式即可求得結(jié)果.【詳解】(1)由題意可知,有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)由樣本估計(jì)總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.人未戴口罩,恰有2人是青年人的概率.【點(diǎn)睛】本題主要考查獨(dú)立性檢驗(yàn)及獨(dú)立重復(fù)事件的概率求法,難度一般.20、(1)見解析(2)見證明【解析】

(1)對(duì)函數(shù)求導(dǎo),分別討論,以及,即可得出結(jié)果;(2)根據(jù)題意,由導(dǎo)數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再令,設(shè),用導(dǎo)數(shù)方法判斷出的單調(diào)性,進(jìn)而可得出結(jié)論成立.【詳解】(1)解:易得,函數(shù)的定義域?yàn)?,,令,得?①當(dāng)時(shí),時(shí),,函數(shù)單調(diào)遞減;時(shí),,函數(shù)單調(diào)遞增.此時(shí),的減區(qū)間為,增區(qū)間為.②當(dāng)時(shí),時(shí),,函數(shù)單調(diào)遞減;或時(shí),,函數(shù)單調(diào)遞增.此時(shí),的減區(qū)間為,增區(qū)間為,.③當(dāng)時(shí),時(shí),,函數(shù)單調(diào)遞增;此時(shí),的減區(qū)間為.綜上,當(dāng)時(shí),的減區(qū)間為,增區(qū)間為:當(dāng)時(shí),的減區(qū)間為,增區(qū)間為.;當(dāng)時(shí),增區(qū)間為.(2)證明:由題意及導(dǎo)數(shù)的幾何意義,得由(1)中得.易知,導(dǎo)函數(shù)在上為增函數(shù),所以,要證,只要證,即,即證.因?yàn)?,不妨令,則.所以,所以在上為增函數(shù),所以,即,所以,即,即.故有(得證).【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,通常需要對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性以及函數(shù)極值等即可,屬于常考題型.21、(1)證明見解析(2)【解析】

(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點(diǎn)到平面的距離;解法二:由條件知點(diǎn)到平面的距離等于點(diǎn)到平面的距離,過點(diǎn)作的垂線,垂足,證明平面,計(jì)算出即可.【詳解】解法一:(1)依題意知,因?yàn)?,所?又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點(diǎn),所以.因?yàn)椋?又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設(shè)點(diǎn)到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因?yàn)?,平面,平面,所以平?所以點(diǎn)到平面的距離等于點(diǎn)到平面的距離.過點(diǎn)作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點(diǎn)到平面的距離.由(1)知,,在中,,,得.又,所以.所以點(diǎn)到平面的距離為.【點(diǎn)睛】本題主要考查空間面面垂直的的判定及點(diǎn)到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論